Simultaneity in Special Relativity - 2

by
Ardeshir Mehta
Ottawa, Canada
Thursday, October 25, 2001

Relativity claims that if two events are simultaneous in an inertial frame of reference, then they cannot be simultaneous in another inertial frame of reference which is moving uniformly and rectilinearly at a velocity \mathbf{v} relative to the first inertial frame of reference.

But if the Lorentz transformation equations are correct, this claim results in a clear contradiction, as follows:

1. Let there be an inertial frame of reference - which we shall designate as \mathbf{I} - in which there are two clocks \mathbf{C}_{1} and \mathbf{C}_{2}, separated from one another spatially, and synchronised: so that whenever the clock $\mathbf{C}_{\mathbf{1}}$ indicates a moment in time $\mathbf{t}_{\mathbf{1}}$, the other indicates a moment in time $\mathbf{t}_{\mathbf{2}}$ such that $\mathbf{t}_{\mathbf{1}}=\mathbf{t}_{\mathbf{2}}=\mathbf{t}$.
2. Let there be another inertial frame of reference - which we shall designate as \mathbf{I}^{\prime} - also moving rectilinearly and uniformly at a velocity \mathbf{v} relative to \mathbf{I}, in which there are two more spatially separated clocks $\mathbf{C}^{\prime}{ }_{1}$ and $\mathbf{C}^{\prime}{ }_{2}$, which are also synchronised: that is, whenever the clock \mathbf{C}^{\prime} indicates a moment \mathbf{t}^{\prime} coinciding with the moment \mathbf{t} indicated by the clock $\mathbf{C}_{\mathbf{1}}$, the clock \mathbf{C}^{\prime} also indicates the same moment \mathbf{t}^{\prime} indicated by the clock $\mathbf{C}^{\boldsymbol{\prime}}{ }_{1}$.
3. Now when the clock \mathbf{C}_{1} indicates any particular moment $\mathbf{t}_{\mathbf{1}}$, the moment $\mathbf{t}_{\mathbf{1}}$ must be related to the moment $\mathbf{t}^{\prime}{ }_{1}$ indicated by the clock $\mathbf{C}^{\prime}{ }_{1}$ by the Lorentz transformation equation

$$
t^{\prime}{ }_{1}=\left(t-v x / c^{2}\right) /\left(1-v^{2} / c^{2}\right)^{0.5}
$$

\ldots where \mathbf{x} is the distance, as measured by an observer in \mathbf{I}, between clock $\mathbf{C}_{\mathbf{1}}$ and clock $\mathbf{C}^{\prime}{ }_{1}$, and the moment $\mathbf{t}=\mathbf{t}_{\mathbf{1}}$ is that indicated by the clock $\mathbf{C}_{\mathbf{1}} \ldots$ and \mathbf{c} is of course the speed of light.
4. So when $\mathbf{C}_{\mathbf{1}}$ and $\mathbf{C}_{\mathbf{2}}$ both indicate a particular moment $\mathbf{t}=\mathbf{t}_{\mathbf{1}}=\mathbf{t}_{\mathbf{2}}, \mathbf{C}_{\mathbf{1}}$ indicates a particular moment \mathbf{t}_{1}.
5. And when the clock \mathbf{C}_{2} indicates the same moment $\mathbf{t}_{\mathbf{2}}=\mathbf{t}=\mathbf{t}_{\mathbf{1}}$ as is indicated by Clock $\mathbf{C}_{\mathbf{1}}$, the moment \mathbf{t}_{2} must be related to the moment \mathbf{t}^{\prime} indicated by the clock $\mathbf{C}^{\prime}{ }_{2}$ by the Lorentz transformation equation

$$
t_{2}^{\prime}=\left(t-v y / c^{2}\right) /\left(1-v^{2} / c^{2}\right)^{0.5}
$$

\ldots where \mathbf{y} is the distance, as measured by an observer in \mathbf{I}, between clock \mathbf{C}_{2} and clock $\mathbf{C}^{\prime}{ }_{2}$, and the moment \mathbf{t} is, again, that indicated by the clock $\mathbf{C}_{2} \ldots$ and \mathbf{c} is again the speed of light.

Simultaneity in Special Relativity-2

6. So when the clocks $\mathbf{C}_{\mathbf{1}}$ and $\mathbf{C}_{\mathbf{2}}$ both simultaneously indicate a particular moment $\mathbf{t}=\mathbf{t}_{\mathbf{1}}=\mathbf{t}_{\mathbf{2}}$, the clock \mathbf{C}^{\prime} indicates a particular moment $\mathbf{t}^{\mathbf{\prime}}{ }_{\mathbf{2}}$.
7. Now unless $\mathbf{x}=\mathbf{y}$ above - which is highly unlikely, though of course not impossible - it is clear that $\mathbf{t}^{\mathbf{\prime}}$ will not be equal to $\mathbf{t}^{\mathbf{\prime}}{ }_{2}$ above - both of them being indicated, of course, when both the clocks $\mathbf{C}_{\mathbf{1}}$ and $\mathbf{C}_{\mathbf{2}}$ indicate the single moment in time $\mathbf{t}=\mathbf{t}_{\mathbf{1}}=\mathbf{t}_{\mathbf{2}}$.
8. But this contradicts Point No. 2. above, according to which whenever $\mathbf{C}^{\prime}{ }_{1}$ indicates any particular moment $\mathbf{t}^{\prime}, \mathbf{C}^{\prime}{ }_{2}$ must also indicate the same moment \mathbf{t}^{\prime}, since both $\mathbf{C}^{\prime}{ }_{1}$ and $\mathbf{C}^{\prime}{ }_{2}$ are synchronised.

Or expressed in table form:

According to Point No. 2, when:

$\mathbf{C}_{\mathbf{1}}$ indicates	$\mathbf{C}_{\mathbf{2}}$ indicates	$\mathbf{C}^{\prime}{ }_{\mathbf{1}}$ indicates	$\mathbf{C}^{\prime}{ }_{\mathbf{2}}$ indicates	Such that
$\mathbf{t}_{\mathbf{1}}=\mathbf{t}_{\mathbf{2}}=\mathbf{t}$	$\mathbf{t}_{\mathbf{2}}=\mathbf{t}_{\mathbf{1}}=\mathbf{t}$	$\mathbf{t}_{\mathbf{1}}$	$\mathbf{t}_{\mathbf{1}}$	$\mathbf{t}^{\prime}{ }_{\mathbf{1}}=\mathbf{t}^{\prime}{ }_{\mathbf{2}}$

According to Points Nos. 3, 5 and 7, when:

C_{1} indicates	C_{2} indicates	$\mathrm{C}^{\prime}{ }_{1}$ indicates	$\mathrm{C}^{\prime}{ }_{2}$ indicates	Such that
$\mathbf{t}_{1}=\mathrm{t}_{2}=\mathbf{t}$	$\mathrm{t}_{2}=\mathrm{t}_{1}=\mathrm{t}$	$t^{\prime}{ }_{1}$	$t^{\prime}{ }_{2}$	$\mathbf{t}^{\prime} \neq \mathrm{t}^{\prime}{ }^{\text {* }}$

It is of course abundantly clear that the above two tables contradict one another in their fifth columns.

Any comments? e-mail me.

[^0]
[^0]: * Or at least, not necessarily.

