SIMULTANEITY IN SPECIAL RELATIVITY - 2

by

Ardeshir Mehta

Ottawa, Canada Thursday, October 25, 2001

RELATIVITY claims that if two events are simultaneous in an inertial frame of reference, then they cannot be simultaneous in *another* inertial frame of reference which is moving uniformly and rectilinearly at a velocity **v** relative to the first inertial frame of reference.

But if the Lorentz transformation equations are correct, this claim results in a clear contradiction, as follows:

- 1. Let there be an inertial frame of reference which we shall designate as I in which there are two clocks C_1 and C_2 , separated from one another spatially, and *synchronised:* so that whenever the clock C_1 indicates a moment in time t_1 , the other indicates a moment in time t_2 such that $t_1 = t_2 = t$.
- Let there be *another* inertial frame of reference which we shall designate as I' also moving rectilinearly and uniformly at a velocity v relative to I, in which there are two more spatially separated clocks C'₁ and C'₂, which are *also* synchronised: that is, whenever the clock C'₁ indicates a moment t' coinciding with the moment t indicated by the clock C₁, the clock C'₂ also indicates the *same* moment t' indicated by the clock C'₁.
- 3. Now when the clock C_1 indicates any particular moment t_1 , the moment t_1 must be related to the moment t'_1 indicated by the clock C'_1 by the Lorentz transformation equation

$$t'_1 = (t - vx/c^2)/(1 - v^2/c^2)^{0.5}$$

... where x is the distance, as measured by an observer in I, between clock C_1 and clock C'_1 , and the moment $t = t_1$ is that indicated by the clock C_1 ... and c is of course the speed of light.

- 4. So when C_1 and C_2 both indicate a particular moment $t = t_1 = t_2$, C'_1 indicates a particular moment t'_1 .
- 5. And when the clock C_2 indicates the same moment $t_2 = t = t_1$ as is indicated by Clock C_1 , the moment t_2 must be related to the moment t'_2 indicated by the clock C'_2 by the Lorentz transformation equation

$$t'_2 = (t - vy/c^2)/(1 - v^2/c^2)^{0.5}$$

... where y is the distance, as measured by an observer in I, between clock C_2 and clock C'_2 , and the moment t is, again, that indicated by the clock C_2 ... and c is again the speed of light.

- 6. So when the clocks C_1 and C_2 *both* simultaneously indicate a particular moment $\mathbf{t} = \mathbf{t}_1 = \mathbf{t}_2$, the clock C'_2 indicates a particular moment $\mathbf{t'}_2$.
- 7. Now unless $\mathbf{x} = \mathbf{y}$ above which is highly unlikely, though of course not impossible it is clear that $\mathbf{t'}_1$ will *not* be equal to $\mathbf{t'}_2$ above both of them being indicated, of course, when both the clocks \mathbf{C}_1 and \mathbf{C}_2 indicate the *single* moment in time $\mathbf{t} = \mathbf{t}_1 = \mathbf{t}_2$.
- 8. But this contradicts Point No. 2. above, according to which whenever C'₁ indicates any particular moment t', C'₂ must *also* indicate the *same* moment t', since both C'₁ and C'₂ are *synchronised*.

Or expressed in table form:

ACCORDING TO POINT NO. 2, WHEN:

C ₁ indicates	C ₂ indicates	C' ₁ indicates	C' ₂ indicates	Such that
$t_1 = t_2 = t$	$t_2 = t_1 = t$	t'1	t'2	t' ₁ = t' ₂

ACCORDING TO POINTS NOS. 3, 5 AND 7, WHEN:

C ₁ indicates	C ₂ indicates	C' ₁ indicates	C' ₂ indicates	Such that
$\mathbf{t}_1 = \mathbf{t}_2 = \mathbf{t}$	$\mathbf{t}_2 = \mathbf{t}_1 = \mathbf{t}$	t'1	t'2	$\mathbf{t'}_1 \neq \mathbf{t'}_2^*$

It is of course abundantly clear that the above two tables contradict one another in their fifth columns.

Any comments? <u>e-mail me</u>.

Or at least, not necessarily.