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Abstract

Microarrays are a recently developed technology designed to make inferences about the

expression levels of thousands of genes simulateously. Dual channel cDNA microarrays

measure relative expression of unknown mRNA fragments (gene expression information)

after competitive hybridization to known spots of immobilized cDNA. Their design com-

plexity allows for many sources of variation to infiltrate experiments, both within, and

between, array slides. The nature of the data, and the experimental complexity has cre-

ated considerable interest in the statistical community. The number of genes placed on

cDNA microarrays is increasing, while the amount of information collected per gene is

low. Coupled with this problem, the proportion of genes likely to differentially express

is a small fraction of the spots on an array. Many practitioners have adopted multiple

comparison procedures in hypothesis testing to analyze cDNA microarrays, controlling

the proportion of Type I errors detected in a list of differentially expressing genes.

In this work simulations of microarray datasets were used to investigate the perfor-

mance of popular analysis methods over a range of experimental settings. Empirical Bayes

analysis was compared to t-statistic (within gene) analysis using a comparable multiple

comparison procedure to contrast the two approaches. Empirical Bayes was found to be

an extremely powerful analysis method when considering the observed proportion of false

discoveries in predicted gene lists. When spot replicate information was low, Empirical

Bayes analysis significantly outperformed t-statistic within gene analysis. From this, it

is concluded here that information sharing between genes in variance estimation is an

important factor in low replicate microarrays.
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It has not escaped our notice that the specific pairing we have

postulated immediately suggests a possible copying mechanism

for genetic material - J.D Watson & F.H.C. Crick

1
Introduction

Molecular Biology is fast becoming a multidisciplinary field with underpinnings involving

Biology, Chemistry, Physics and Mathematics. It involves the study of molecular pro-

cesses within cells, the smallest fundamental unit within organisms. There are two major

classifications of cells; prokaryotes and eukaryotes. Prokaryotic organisms are unicellular

and have relatively simple anatomies. They have a circular genome to carry genetic in-

formation inside the cell, and simple organelle structures. Eukaryotic organisms can be

unicellular or multicellular, and generally possess radically more complex structures. They

have a nuclear membrane, encapsulating a nucleus organelle containing genetic informa-

tion inside the cell. Specialized structures present in eukaryotes include chloroplasts in

plants for photosynthesis of light into energy, and mitochondria in animals for respiration

transforming glucose molecules under aerobic conditions into energy and the bi-products

carbon dioxide and water.

Cells contain a collection of structures in which controlled enzyme-catalysed chemical

reactions maintain everything essential for organism survival. Proteins are the molecules

which, based on their unique structure, catalyze specific chemical reactions in organisms.

They are formed by the polymerization of repeating structural units called amino acids.

Amino acids are joined head to tail by peptide bonds in a condensation chemical reaction

to form polypeptide molecules. There are twenty different choices available for each

amino acid residue allowing a massive number of various length polypeptide molecules to

exist. Organisms synthesize thousands of different protein molecules whose vast range of

1



1.1 Nucleic acids 2

physiochemical characteristics stem from the varied properties and combinations of the

amino acid residues.

In 1944 Oswald Avery and his colleagues [1] demonstrated that deoxyribonucleic acid

(DNA), is the molecule which carries genetic information inside the cell, and is the funda-

mental unit of inheritance within living organisms. In 1953 Watson and Crick [2] revealed

the structure of DNA as a symmetrical double stranded helical duplex possessing com-

plementary strands. Specific coding regions of DNA molecules are called genes which are

the “genetic blueprint” encoding for proteins in the cell. Chromosomes are large DNA

molecules which contain thousands of genes, packaged up with highly conserved histone

proteins into a structured molecule. In 1958 Fancis Crick published his central dogma [3],

defining perceived relationships of DNA molecules to protein molecules via intermediate

ribonucleic acid (RNA) molecules, the paradigm of Molecular Biology.

1.1 Nucleic acids

Nucleic acids are made up of the atomic elements Hydrogen (H), Carbon (C), Nitrogen

(N), Oxygen (O), and Phosphorus (P). Each molecular strand is formed by the polymer-

ization chemical reaction of repeating structural units called nucleotides of which there

are three components, a phosphate group bonded to a sugar component which in turn is

bonded to a nitrogenous base.

Figure 1.1: Components of DNA, the nucleotide base in the illustration is Adenine. Note that the
deoxyribose sugar component is oriented almost perpendicular to the nucleotide base.

Nucleotides link to adjacent units to form long chains between the phosphate and sugar

components held together by strong phosphodiester bonds. Phosphate groups bridge be-

tween the 3′ and 5′ carbon positions (labelled 1 to 5) of successive sugar residues, forming
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a strong backbone to the molecule. The sugar component structure differs slightly be-

tween DNA and RNA. In DNA the sugar component is deoxyribose, and in RNA the

sugar component is ribose which is hydroxylated (containing an extra hydroxyl group).

The ribose sugar in the backbone makes RNA strands more unstable than DNA strands,

susceptible to base catalysed hydrolysis reactions cleaving apart the RNA backbone into

smaller chain fragments. The nitrogenous base component can vary. There are five dif-

ferent base structures found in nucleic acids; Adenine (A), Guanine (G), Cytosine (C),

Thymine (T), and Uracil (U). The five different nucleic acid bases are classified as either

purines or pyrimidines depending on their structural similarity to their parent molecules,

purine and pyrimidine. Purines have two carbon nitrogen rings in their structure, and

pyrimidines have one carbon nitrogen ring. DNA chains are made up of 4 possible ni-

trogenous base components {AGCT}. In RNA Uracil replaces the structurally similar

nitrogenous base Thymine, the 4 possible bases are {AGCU}.

Figure 1.2: Purine and pyrimidine nucleotide bases in DNA, and RNA. Uracil replaces the base
Thymine in RNA.

The allowable base components of nucleic acids can be polymerized in any order giving

the molecules a high degree of uniqueness. The primary structure of nucleic acid molecules

can be summarized by the sequence of nitrogenous bases starting with a phosphate group

attached to the 5′ carbon atom of the first nucleotide, and ending with a hydroxyl group

attached to the 3′ carbon atom. DNA in its native form is double stranded. The highly

regular symmetrical corkscrew structure consists of two backbone chains on the outside

of the helix, and nucleotide bases on the inside. Specific complementary base pairing

between purine and pyrimidine nucleotides exists via hydrogen bonds: Adenine binds to
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Thymine forming two hydrogen bonds, Guanine binds to Cytosine forming three hydrogen

bonds.

Figure 1.3: Schematic illustrating DNA purine-pyrimidine base pairing, hydrogen bonds are dashed
lines.

The strand identified starting with a phosphate group attached to the 5′ carbon atom in

the deoxyribose backbone is called the sense strand, the reverse complement strand start-

ing with a phosphate group attached to the 3′ carbon atom in the deoxyribose backbone

is called the antisense strand. The symmetrical structure of DNA strands allows for a

mechanism of replication of the molecule.

The hydrogen bonds between paired nucleotides are weaker than the phosphodiester

links in the backbone of the molecule, so that if DNA is heated above a characteristic

melting temperature, Tm (typically around 72�), thermal energy will break the hydro-

gen bonds between purine and pyrimidine nucleotides, and the helix will denature into

separate single stranded DNA molecules in solution. The Tm value is defined to be the

temperature at which 50% of identical denatured sense and antisense DNA molecule

strands in equilibrium realign into double helix molecules. Sufficient thermal energy in

the molecule breaks short runs of misaligned nucleotide base paired regions allowing global
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alignment of nucleotide base pairs to form under an S shaped probability melting curve,

denaturation increases with temperature and available thermal energy. The Tm value is

derived from the molecule length and the amount of Cytosine-Guanine content which

forms stronger hydrogen bonds. Renaturation of the molecule can occur at temperatures

5° - 10� below the melting temperature. Under these annealing conditions denatured

DNA almost completely renatures in a process called hybridization.

Figure 1.4: Schematic illustrating DNA Double Helix structure, adjacent purine-pyrimidine bases are
actually planar to one another, almost perpendicular to the backbone.

The structure of RNA can be single or double stranded. Double stranded RNA does

not form a helical structure due to sterical clashes in its hydroxyl group specifically in

the second carbon position. Single stranded RNA can form secondary structures as in-

tramolecular complementary purine and pyrimidine bases bond back on themselves within

the chain to form loops. Double stranded RNA structures can form secondary structures

with intermolecular complementary purine and pyrimidine bases bonding between the

strands, and intramolecular bonding.
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1.2 Protein synthesis

The central dogma for the functional roles of genes in DNA chromosomes occurs via a

complex process. DNA molecules carry genetic information directing their own replication

and transcription of genes. Double stranded DNA molecules self replicate during cellular

division. Intermediate RNA molecules are templates for synthesis of polypeptide chains

which undergo conformational tertiary structure changes to form proteins. Each molecule

strand separates, so its complementary strand can be enzymatically synthesised in a semi-

conservative manner to produce a complete copy of the molecule for each daughter cell.

DNA directs protein synthesis in a 2 stage process using complex molecular machinery

to create polypeptide chains. In the first stage, single stranded messenger RNA (mRNA)

is synthesised in a process called transcription from specific sections of the double stranded

DNA templates by the enzyme RNA polymerase. An enzyme in Escherichia Coli (E. Coli)

bacteria was discovered in 1970 by Temin & Baltimore [4, 5] making it possible to reverse

this process in the laboratory. Under the process reverse transcription, mRNA can be

synthesised back into single stranded complementary DNA (cDNA), an exact copy of the

genetic template involved in protein synthesis. Messenger RNA contains the complement

of the genetic template of a specific gene coding for a specific polymerized sequence of

polypeptides for protein synthesis. After transcription the messenger RNA molecule is

transported by the cell to the cytoplasm for protein synthesis. There are two structural

classes of RNA involved in protein synthesis, transfer RNA, and ribosomal RNA. Transfer

RNA and ribosomal RNA contain evolutionary conserved secondary structures which

perform functional roles during protein synthesis.

In the second stage, mRNA encodes for amino acids in sequential order under an ir-

reversible process called translation. Sequential triplets of nucleotides in mRNA called

codons encode for specific amino acids. There are 43 = 64 combinations of nucleotides

encoding for twenty possible amino acids. Redundancy in the third position of triplet

combinations allows more than one codon to encode for a particular amino acid. Transfer

RNA recognizes codons and carries corresponding amino acids for sequential polymeriza-

tion synthesis in conjunction with ribosomal RNA. The synthesised polypeptide transcript

products undergo post-translational processing to form functional entities. This involves

protein folding to create functional tertiary and quaternary structures (complexes of mul-

tiple protein structures) capable of carrying out different functions in the life cycle of an

organism.

The conversion of encoded information from genes to mRNA, and then to the resulting

protein is known as gene expression. The rate at which this occurs can vary between genes.

Intermediate mRNA molecules degrade within minutes in the cytoplasm of cells, making

abundance highly correlated with the rate that a cell synthesises proteins. If a gene is
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Figure 1.5: Diagram of Francis Crick’s Central Dogma.

highly expressed, then its corresponding mRNA template will be highly abundant in the

cytoplasm of the cell.

In the later part of the 20th century various experimental breakthroughs were dis-

covered in the laboratory to aid in the scientific manipulation of nucleic acid molecules.

Restriction Endonucleases were discovered in certain bacteria species by Hamilton Smith

and Daniel Nathans in the late 1960’s [6]. These enzymes recognize specific nucleotide

base patterns four to eight bases in length within double stranded DNA. They cleave

the backbone of both strands of the duplex in specific positions creating two molecular

fragments, with either blunt ends or sticky overhang ends depending on the Restriction

Endonuclease used. Type II Restriction Endonucleases cut at points within the recog-

nition site, enabling scientists to cut double stranded DNA molecules into many smaller

fragments, all cut at the same recognition site.

In 1975 Ed Southern published a technique [7] for analyzing gene structure and mea-

suring the quantity of specific DNA products of interest. This was accomplished by

utilizing hybridization properties of DNA to detect specific sequences in complex pop-

ulations of DNA fragments. The technique (dubbed Southern blotting) involves using

electrophoresis to separate genomic DNA fragments in a gel by molecular size, blotting

the fragments onto a nitrocellulose filter, then hybridizing a fluorescent or radioactively

labelled complementary DNA probe of known composition to the gel in order to identify

specific fragments of interest. Soon after in 1977, Alwine et al. [8] published a similar

technique named Northern blotting to manipulate mRNA isolated from cells. In this

technique electrophoresis separates the mRNA fragments based on their molecular size,

the fragments are then hybridized with a fluorescent or radioactively labelled complemen-

tary mRNA probe of known composition to identify specific fragments of interest. These

methods are reasonably sensitive and can detect small amounts of DNA or mRNA. The

disadvantage is that they are labour intensive and can only investigate a small number of

genes at a time.
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At the beginning of the 21st century, molecular biology moved into the genomics era.

Automated sequencing methods were developed to read the genetic code of genomic DNA

and reverse transcribed cDNA, minimizing human labour and error in the laboratory.

Expressed sequence tag (EST) sequencing involves the cellular extraction of specific ex-

pressed mRNA from cell samples in organisms. The cDNA versions of these transcripts

are obtained by reverse transcription and sequenced to identify the underlying bases in

the mRNA transcript. EST sequence base composition information is stored in databases

such as the Genbank 1 flatfile database, in extensively annotated records. The volume

of information in these databases from EST sequencing and genomic sequencing has in-

creased in the last decade at an exponential rate. The underlying annotation information

is extremely useful in the microarray experiments discussed in the next section.

1.3 Microarray technology

1.3.1 Overview

Macroarrays, microarrays and oligonucleotide array technologies were all developed within

the last decade. These technologies are an extension of Northern blotting, and are designed

to measure mRNA expression levels for thousands of genes simultaneously in a single

experiment. This technique can be used to look at differential gene expression in specific

tissues of an organism. An array based approach is one of the first screening steps in

identifying candidates for further laboratory experimentation to make inferences about

gene function. The general methodology involves taking advantage of the specific sense

and antisense hybridization binding properties of nucleic acid molecules.

Consider a unique mRNA molecule of unknown abundance to be a target species of ex-

pressing RNA of interest. The antisense copy of the target mRNA is a cDNA probe which

will bind to the target mRNA under controlled hybridization conditions. The idea is to

separately immobilize thousands of antisense probes of known sequence identity, comple-

mentary to target mRNA transcripts of interest. Unique antisense probes are placed in an

ordered array of spots bound to a glass slide, with each spot containing millions of identical

copies of the unique antisense probe. Probes are selected in a carefully constructed design

so that there will be high specificity to target mRNA molecules under hybridization. Each

probe must be gene and organism specific across the microarray otherwise hybridization

by sufficiently similar mRNA species will compromise the experimental results.

The cDNA constructs are created and amplified by either reverse transcription or

oligonucleotide synthesis (synthetic constructs of short runs of nucleotide sequences). A

tissue sample of expressing target mRNA transcripts is collected, within which the abun-

1National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov
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dance of each target species is unknown. All of the collected mRNA transcripts are sub-

sequently labelled with a fluorescent dye molecule. The labelled tissue sample is washed

over the glass slide under carefully controlled hybridization conditions allowing an equal

probability of annealing by all the mRNA transcripts present. Target mRNA species will

have specific affinity to hybridize to their complementary cDNA probes at appropriate

annealing temperature conditions. After hybridization, the sample is carefully washed off

the slide surface leaving only the hybridized complementary mRNA bound to the probe

by hydrogen bonding.

Image analysis is used to quantify the amount of fluorescence emitted from each hy-

bridized spot. The recorded intensity is proportional to the abundance of the transcript

bound to the probe from the tissue sample. This approach can be extended to many

thousands of probes immobilized in an ordered array of spots limited only by the space

available on the glass slide.

1.3.2 Complementary DNA microarrays

Complementary DNA microarrays allow competitive hybridization to take place between

multiple target samples identified with different fluorescent markers. Current two target

channel technology uses the fluorescent dyes, cy5 (red) and cy3 (green), to identify mRNA

transcripts from either target sample. These dye molecules emit fluorescence upon exci-

tation with laser light at the wavelengths, 635 nm, and 532 nm respectively. Usually a

control sample and a treatment sample are analyzed, with interest focussed on detect-

ing differences in the abundance of the mRNA transcripts in each sample. Simultaneous

competitive hybridization of the two target samples is allowed to take place. Messenger

RNA species from either sample under optimal experimental conditions have an equal

probability of hybridizing to spotted cDNA probes. The intensity of the emitted fluo-

rescence by each hybridized spot is proportional to the relative abundance of hybridized

mRNA transcripts derived from both target samples. This is a crucial property of cDNA

microarrays since quantifying the absolute amounts of starting target mRNA in tissues

samples is difficult. If both mRNA transcripts are of equal abundance for a particular

gene, the spot(s) corresponding to that gene will emit equivalent fluorescence in both

channels. The resulting combined colour after image analysis contains varying shades of

yellow depending on transcript abundance. The equal abundance of mRNA transcripts

between target samples is known as equivalent expression. If each mRNA transcript is

present in significantly different amounts the resulting combined colour after image anal-

ysis will be varying shades of red or green respectively, depending on differential signal

abundance. The differing abundance of mRNA transcripts between target samples is

known as differential expression.
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Figure 1.6: Overview of cDNA spotted array experimental process (Courtesy of Mik Black).

1.3.3 Array construction

Public and private sequencing projects contain vast amounts of useful EST sequence and

annotation information. Researchers use these databases to construct cDNA libraries of

expressed mRNA cells for a selected organism. Informatics algorithms are then used to

construct a suitable set of cDNA probes of interest which are stored in multiple 384 well

microtitre plates. Each 384 well microtitre plate is a 16× 24 grid of wells exactly 4.5mm

apart. The position of each probe in each well is tracked for spotting onto glass slides.

Coatings are added to the slides to make the surface hydrophobic and positively charged,

so cDNA probes will stick to the surface.

The total printable area of an experiment covers about 22.5 × 22.5 millimetres of a

single glass microscope slide. Printing tips of an open capillary design similar in principle

to a quill pen are used to deposit cDNA probes onto the slide surface. Current technology

uses 16 print tips in a 4×4 grid, with each tip spaced 4.5 millimetres apart for dipping into

the 384 well microtitre plates. Highly accurate robotics control the print tip movements,

surface tension loads 16 probes into the print tips, and precise robotic control taps them

onto the glass slides depositing less than 1µl of the cDNA probe. The open capillary

design allows rapid rinsing and drying of tips before spotting the next 16 samples onto

the slide. Each spotted probe is approximately 130 µm in diameter and contains millions

of copies of identical cDNA. Each print tip spots a grid matrix of probes within a 4.52

millimetre area limited by the distance to the next print tip grid. The complete process
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can take several hours to complete depending on the number of probes and arrays to

be spotted. The slides are then “snap” cooled to ensure each cDNA probe is uniformly

distributed throughout the spot, and denatured so each probe is able to be hybridized.

Finally, blocking agents are applied to stop DNA hybridizing over the unspotted regions

of the slide surface.

1.3.4 Hybridization

Each fluorescently labelled treatment sample is placed in the same hybridization mixing

chamber along with the spotted microarray slide at suitable annealing temperatures. The

hybridization solution must be well mixed to ensure mRNA targets from both samples

are evenly distributed throughout the solution. Identical mRNA species from each treat-

ment condition competitively hybridize to their complementary cDNA probes. Mixing

ensures that each target mRNA species has an equal probability of binding to the com-

plementary probes. This process takes several hours under carefully controlled conditions.

After hybridization the excess liquid is washed off the microarray slide to remove unhy-

bridized mRNA. Blocking agents ensure that unhybridized target mRNA does not bind

to unspotted areas of the glass slide.

1.3.5 Fluorescence detection

Fluorescence is caused in certain molecules by the absorption of light at a certain wave-

length which matches the energy required to excite electrons to a higher transitional state.

Electrons within fluorescent molecules fall back to their ground state releasing lower energy

fluorescent light at a longer wavelength lower in energy than the excitation wavelength

in a phenomenon called Stokes shift [9]. The difference in excitation energy and emission

energy is dissipated as heat within the molecule. In competitive hybridization experi-

ments (e.g., cDNA microarrays) fluorescent dyes are chosen which have different emission

wavelengths so their signals can be detected independently of one another within the same

experiment. The emission energy is linearly proportional to the amount of fluorescently

labelled cDNA hybridized to the probe.

The two fluorescent dyes, cy5, and cy3, display fluorescence upon light excitation at

635nm, and 532nm respectively. Lasers are used as the excitation light source for the

wavelengths required, with the emitted fluorescent light detected using a photomultiplier

tube which measures a voltage proportional to the amount of photons absorbed in the

detector. The cy5 dye requires less excitation energy and is more susceptible to photode-

gredation. The newer generation of laser scanners are able to simultaneously scan and

detect fluorescence at both wavelengths.

The microarray slides are processed using a 16 bit fluorescent scanner integrated with
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computer software, and image files are stored in the lossless TIFF format for each flu-

orescent channel. Image analysis software creates a raw intensity data file to quantify

spot brightness, and quality, for each of the fluorescent dyes as representative summary

statistics. Median summary statistics of intensity values are usually most representative

of spot images, as they are more robust measures of the distributions of pixels than mean

summaries. Median intensity values are proportional to median photon counts for each

spot detected with a photo multiplier tube in the scanning process. The theoretical raw

intensity values range from 1 to 65536, or 20 to 216 on the binary scale.

1.3.6 Normalization

Throughout the process of conducting a cDNA microarray experiment there are several

sources of variation introduced by the experimental process that need to be taken into

account. It is likely that there will be unequal amounts of expressing mRNA transcripts

between target samples, as it is difficult to accurately measure expressed mRNA during

cellular extraction. The fluorescent labeling reactions of target mRNA and the hybridiza-

tions to cDNA probes may also have different efficiencies for each species of mRNA.

Fluorescent dyes have been found to display intensity dependence [10], and printing tips

may behave slightly differently due to imperfections as a result of age and wear. Any of

these factors can bias the results. To account for this, numerical techniques are used to

normalize the raw intensity data after image analysis. The total amount of expressing

mRNA in target samples is assumed to be the same in cDNA microarrays using com-

petitive hybridization so the ratio of total measured expression in each channel should

be equal to 1. If abundance of labelled mRNA transcripts is significantly higher in ei-

ther channel, naive total intensity normalization can be used, compensating up the total

intensity in the other channel so the ratio of total measured expression in each channel

equals 1. A subset of housekeeping genes essential for cell survival within both target

mRNA samples that are known to always have high expression can be normalized to 1,

especially useful in experiments where a treatment drastically changes the amount of gene

expression relative to the other treatment. Print tip normalization techniques using loess

[11] non-parametric smoothing have been used to account for variation between print tips.

Further reading about different normalization techniques is available in [12].



2
Methods

2.1 Visualizing microarray designs

Graphical diagrams are a visually interpretable way of representing a set of related two

colour microarray experiments. Edge directed graph illustrations simplify complex mi-

croarray experimental designs on the same spotted arrays. There are two parts to their

structure, nodes and edges. Target mRNA samples are assigned as labelled nodes for a

set of microarray experiments on the same spotted cDNA probes. Edges are lines con-

necting any two nodes corresponding to actual competitive hybridizations between two

target mRNA samples on a microarray slide. For visual enhancement bi-coloured arrows

depict edges incorporating dye labeling information to each target mRNA, one convention

labels green at the base of the arrow representing the cy3 dye, and red at the arrowhead

representing cy5 the dye (Figure 2.1i).

13
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Figure 2.1: (i) Directed graph of a single microarray experiment.(ii) A dye reversal experiment. Target
mRNA samples are labelled A and B, usually the control target mRNA is labelled using cy3
green dye.

Direct and indirect comparisons can be made between any two target mRNA samples

via single and multiple nodes as long as a path can be traced via edges through nodes.Each

arrow depicts an actual microarray hybridization experiment with its own sources of

variation, so the shorter the path across multiple microarrays the higher the precision

will be for statistical analysis [13]. Multiple competitive hybridizations using the same

dye allocations between two target mRNA samples can be summarized by a single arrow

labelled with an integer representing the number of repeated microarray hybridizations.

A dye reversal experiment where fluorescent dyes are swapped between samples on two

microarrays can be visually summarized with two arrows connecting target treatment

nodes.

2.2 Measured intensities

Genepix scanner image analysis software such as the proprietary Genepix Pro software

[14] bundled with the Genepix 4000B scanner creates a genepix results format (GPR)

text file representative of the two 16 bit TIFF file images from the laser scanned slides.

The first 31 lines of this file are diagnostic scanner settings. The GPR data following the

diagnostic information consists of a matrix of multiple columns of microarray annotation,

grid coordinates, measured intensities, and diagnostics for the two channels. The red

and green foreground intensities, and the background red and green intensities are the

responses of interest. Background correction by subtracting neighbouring background

intensities from the adjacent foreground spot intensities is a standard technique to adjust

for uneven background anomalies caused by factors such as uneven blocking, and slide

surface non uniformity. The resulting raw intensities are denoted
˜
R and

˜
G, representing

the intensity channel derived from red and green fluorescent images.
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2.3 Notation

2.3.1 Single microarray

In a microarray experiment involving a single array with cDNA probes spotted on the

microarray complementary to m genes of interest (as in Figure 2.1), each treatment is

assigned to one of two fluorescent dyes. This causes complete confounding between fluo-

rescent dyes and the treatments themselves. Often channels are labelled by dye colour.

This is not capable of being extended to experimental designs incorporating multiple

microarrays where dye reversals take place in some of the target mRNA treatment hy-

bridizations. For this reason the following notation, defining
˜
x =

˜
G, and

˜
y =

˜
R will be

used to represent the measured intensities in a single microarray experiment where
˜
x and

˜
y refers to the intensity vectors of actual target mRNA treatments,

˜
x =


x1

...

xm

 ˜
y =


y1

...

ym

 . (2.1)

After normalization to adjust the channel intensities of the microarray slide for effects due

to the technological process rather than biological differences in target mRNA or printing

artefacts, the labeling of treatments is arbitrary, as dye bias effects are assumed to have

been removed. Designs that have no replication of probed mRNA spots eliminate the

ability for assessing any within-gene intensity measurement error.

In competitive hybridization of single cDNA microarrays, the primary comparison

of interest is the relative expression ratio T , for each of the m genes on the array. By

convention the treatment labelled with the cy5 (red) dye is the numerator of the expression

ratio,

Ti =
Ri

Gi

=
yi

xi

, i = 1, . . . ,m, (2.2)

where m is the number of spots on the array. Theoretical scanned intensities in each

channel range in magnitude between 20 = 1 and 216 = 65536. The distribution of the

relative expression ratio distribution, T , under equivalent expression should be centred

around 1. Upward regulated genes in treatment yi will have expression ratio greater than

1 covering a range between (1, 65536), downward regulated genes in treatment yi will have

an expression ratio less than 1 covering a range of (0, 1), the reciprocal ratio. The problem

with examining measured intensity ratios on an untransformed scale is that the extremely

right skewed distributions of each intensity channel cause the range of downward regulated

genes to be much smaller than upward regulated genes. For example, genes which exhibit
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twice the expression in one of the channels, will either have a relative expression ratio of

0.5 , or 2. The log transformation is commonly used to down-weight intensities adjusting

values relative to signal size. This adjusts the scale for comparison of logged reciprocals

to one that is symmetric. The log2 transformation has further interpretation significance

as it relates to the base 2 of 16 bit scanner binary numerical storage in computers. The

log ratio is given by,

log2(Ti) = log2

(
yi

xi

)
= log2(yi)− log2 (xi), where i = 1, . . . ,m genes.

Under equivalent expression, signal in both channels is the same, and thus, log2(Ti) = 0.

Upward and downward regulated ratios are differentiated by the sign of the log trans-

formed intensities, as illustrated in Figure 2.2.

-�

Downward regulation

-8 . . . -2 -1 0 1 2 . . .

Upward regulation

8

Figure 2.2: Theoretical number line of the log ratio, log2(Ti) of measured intensities.

2.3.2 Multiple microarrays

Assuming there is no replication of probed mRNA spots on any of the microarray slides in

the series of experiments, suppose we are interested in comparisons between cDNA target

samples A and B, as shown in Figure 2.3. Let n1 and n2 = n1 + n0 denote the number

of replicate measurements in each condition, where n0 provides auxiliary information

between target samples B and C.

The notation in 2.1 can be extended to the matrices, X and Y , of intensities from a

collection of related microarray experiments,

X =


x11 . . . x1n1

...
. . .

...

xm1 . . . xmn1

 Y =


y11 . . . y1n2

...
. . .

...

ym1 . . . ymn2

 .

In single, and multiple array experiments, after appropriate within-slide and between-
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Figure 2.3: Directed graph of n1 hybridizations between A and B, and n0 hybridizations between
B and C in a balanced dye swap microarray experiment.

slide normalization, intensities derived from either channel could have been arbitrarily

labelled as the vector
˜
z, or the matrix Z respectively. This notation will be used for

calculations involving the same computation in both channels where,

˜
z =


z1

...

zm

 , or Z =


z11 . . . z1n1

...
. . .

...

zm1 . . . zmn1

 .

In experimental designs where there is replication of spotted mRNA on some of the

microarrays, the amount of intensity information will differ depending on the gene of

interest. Matrix notation is inappropriate under these designs as n1 and n2 are variables

depending on the amount of spot replication. In these designs, the data for each gene i

can be represented by xi = (xi1, . . . , xin1), and yi = (yi1, . . . , yin1).

2.4 Exploratory plots

Researchers are continually devising new types of diagnostic exploratory plots to graph-

ically represent artefacts of interest within pre and post-normalized microarray experi-

ments, such as scatter plots, boxplots, and image contour plots of single and multiple array

slides [15]. Spot statistics of interest are generally derived from red and green foreground,

and background log-intensities. Each type of plot has certain advantages in the patterns

of the information that can visually illustrated. Examples of scatter plots in Figures 2.4,

and 2.5, come from two control samples on an E. coli cDNA microarray, [16]. A scatter

plot of R versus G on the log2 transformed scale visually relates the relationship in the

ratio T in equation 2.2 for each spot. Equivalently expressed genes are expected to lie on

the 45° line after normalization of each slide.

Scatter plots commonly called “MA-plots” (as in Figure 2.5) are helpful in identifying

spot artefacts and intensity dependent patterns in single microarray experiments [10].

These are plots on the log transformed scale where the intensities undergo a rotation
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Figure 2.4: Scatterplot of log2(R) versus log2(G) intensities. The 45° dotted line depicts expected
equivalent expression.
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through the transformation equations,

M = log2(R/G)

= log2(R)− log2(G), (2.3)

and

A = log2(
√

R ∗G)

=
log2(R) + log2(G)

2
. (2.4)

The notation M and A refers to the minus, and add operators involved. The quantity

A acts as a measure of the average total abundance, while M acts as the difference in

relative intensity, revealing intensity dependent information as the signal increases in both

channels. Equivalently expressed genes are expected to be centered about 0 on the y axis.

Points which lie above 0 on the y axis have higher expression in the red dye, points which

lie below 0 on the y axis have higher expression in the green dye.
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Figure 2.5: MA-plot of M = log2(R)− log2(G) versus A = 1
2 (log2(R) + log2(G)) intensities. The dotted

line at M = 0 depicts expected equivelent expression.
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Nonlinear smoothers are used to fit a smoothed trend line to the data to identify trends

across the whole microarray, or within print tip groups to identify individual variation in

printing tips. The similar nonlinear smoothers lowess and loess are generally used. Due

to its more simplistic approach, lowess is computationally faster.

2.5 Bioconductor

Bioconductor 1 [17] is an open source software development project which started in 2001,

providing software tools for the analysis and comprehension of genomic data. The found-

ing core development team is based in the Biostatistics Unit of the Dana Farber Cancer

Institute in the Harvard Medical School/Harvard School of Public Health. The open

source nature of the project under a General Public License as published by the Free

Software Foundation, encourages developers anywhere in the world to contribute useful

software tools to the evolving development for the benefit of world wide genomic research.

The underlying language of the bioconductor project is R [18], which uses packages

of bundled software code to design and distribute tools for multiple operating systems

within an environment allowing rapid development of extensible, scalable software. The

1http://www.bioconductor.org
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bioconductor website is used to distribute software packages, documentation, and public

scientific data. The distributions are available as two snapshots, the current stable release,

and a developmental release incorporating the latest packages, with an associated risk of

software instability. Static snapshots of scientific data are provided for analytical analysis

since public data available over the internet changes quickly over time. For reproducibility

of research results collaborators across the world need to be analyzing the same datasets

independently to validate and compare analytical methods.

The documentation provided is in portable document format (PDF), and as pseudo-

LATEX source code text files under the Sweave2 framework [19]. A graphical widget envi-

ronment recognises code chunks within pseudo-LATEX files allowing users to validate results

in a computing environment while reading the pdf documentation. One of the goals of

the bioconductor project is to encourage reproducible research through the Sweave [19]

system, and to provide stable snapshots of example datasets for software validation. Bio-

conductor packages are written within an object oriented programming framework. An

object structure is an access mechanism to locate and modify data, class structures define

a blueprint of variables and methods accessible to an object, methods are programming

routines which access, modify, and process content within the class structures.

There are four main parts involved in microarray dataset access and processing within

bioconductor. The first part provides methods handling the loading of scanned intensity

files from various microarray image analysis formats. These methods create an expression

set object encapsulating a complete experiment, each containing the untransformed in-

tensity responses and auxiliary experiment annotation information. Further information

can be subsequently added to the expression set. The second and third parts provide

normalization methods and exploratory plot methods to process pre and post-normalized

expression sets. In the final part of analysis, bioconductor provides statistical tools to

analyze expression sets filtering out genes of interest.

In cDNA microarray packages for bioconductor, either Spot [20] or GPR file formats

derived from image scanners are loaded into the expression set which provides storage

slots for relevant intensity and microarray annotation information. The red and green

untransformed raw intensities are read in and stored into slots named maRf, and maGf.

The data can be either in the form of vectors representing one microarray, or matrices

representing multiple microarrays from the same experiment. Functions performing nor-

malization methods create a similar object which is now a normalized class. The intensity

information is stored in slots maM and maA, representing the transformations in equa-

tions 2.3 and 2.4. Multiple hypothesis comparison procedures require information stored

in the normalized slots maRf, and maGf to be back transformed onto normalized R′ and

2 Sweave is a system to generate PDF documentation in a framework to allow the reader to recreate
and modify the results reported within the document, http://www.ci.tuwien.ac.at/∼leisch/
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G′ log-intensity scales. Solving two simultaneous equations with two unknowns yields the

inverse transformation,

log2(G
′) = log2(R

′)−M (A)

log2(G
′) = 2A− log2(R

′) (B)

Substituting (A) into (B)

log2(R
′)−M = 2A− log2(R

′)

2log2(R
′) = 2A + M

log2(R
′) = A +

M

2
(2.5)

log2(G
′) = A +

M

2
−M

= A− M

2
. (2.6)

Using equations 2.5 and 2.6 it is straight forward to calculate the normalized values of R′

and G′ on the transformed scales. As of undertaking this work, functions did not exist

in bioconductor to back transform maM and maA values into maRf and maGf inten-

sities. Example functions within the bioconductor framework were written (Appendix

A.1) to extract this information from the data structure objects depending on their class;

marrayRaw, and marrayNorm.

2.5.1 Reading GenePix files

Bioconductor has a library called marrayInput [15] to load output files from GenePix

software into R [18]. The GenePix array list format (GAL) is a standard spot descrip-

tion format identifying layout characteristics of oligo or cDNA spots in Blocks, Rows and

Columns, alongside Names and Identifiers of printed substances. GAL files can be gener-

ated from third party sources for any microarray facility, and are used as input into the

microarray robotics. If GAL files are derived from third party sources the nesting order

of Blocks, Rows and Columns is not necessarily the same as the nesting order of the in-

formation from the GPR files from scanning. This can create a problem in bioconductor,

as the code to upload the data merges description information (names and identifiers)

contained within GAL files to intensity information contained within GPR files. In this

scenario it is possible to scramble description information with respect to the intensity

data. GPR files also contain Gene annotation information for Names and Identifiers of

printed substances, but this is not read by default in bioconductor. Using this auxil-

iary information, modification was made to the provided R functions in the marrayInput

library to upload the Gene annotation information directly from the Names and Identi-

fiers columns within GPR files already synchronized to intensity information (Appendix
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A.2). Since this work it was discovered that the bioconductor function read.marrayRaw

in the marrayInput library can parse both GPR and GAL files. This allows synchronized

description information to be added into the expression set via a two step process.

2.5.2 Speed issues

The amount of information stored within microarray experiments is continually increasing,

that is, in the number of arrays within an experiment, and the number of spots on

each array. This is challenging computer hardware required for data storage (disk space

and memory) and analysis (processing speed). The sheer volume of information in raw

intensity format files must be cut down to remove redundancy and promote scalability

as datasets increase in size. In GPR files, there are many columns of auxiliary spot

statistic information which are not necessary for downstream microarray analysis, and

can be discarded. Only about 7 columns of data are required for downstream analysis, as

opposed to the 48 columns3 contained in the data field section of each GPR file.

Functions within the bioconductor package marrayInput were found to be quite ineffi-

cient in the speed of loading multiple GPR files into a single expression set. They use the

scan function to read each row of intensity data from each array line by line. In the pro-

cess, scan can be optimized by discarding columns which the expression set doesn’t need

to read into memory, significantly improving upload speed. The R code in the function

read.marrayRaw was modified to improve uploading speed of Spot and GPR text files.

The approach proposed utilizes the “what” argument within the scan function. Any field

that is not required is given a list entry of “NULL”, scan then skips the field until it finds

a field it requires (See code Appendix A.3).

A test was conducted on the four swirl4 data set Spot files provided in the Vignette5

documentation example. On a 1.8Ghz machine running R version 1.8.1 on linux6, the four

files were uploaded 10 times comparing the original read.marrayRaw code to the modified

code. The original code took ∼ 36 seconds to upload the spot files, the modified code

took ∼ 12 seconds to upload. In this example a 300% speed increase was obtained, so

the improvement will certainly be significant when loading hundreds of microarrays into a

single expression set. The optimization methodology used was submitted to the package

co-author and maintainer (Y. Yang) for incorporation into the package marrayInput in

future releases of bioconductor.

3GPR Version 3.0, results acquired using Genepix Pro 4.1.1.4 software
4Dataset provided by Katrin Wuennenberg Stapleton from the Ngai Lab at UC Berkeley.
5Sweave [19] pseudo-LATEX PDF documentation
6Redhat 8.0 operating system



3
False Discovery Rate Control

The genomics era of the last decade has produced an explosion of biological sequence

information. Advances in microarray technologies are likely to see increasing numbers of

transcripts for genes of interest (under hybridization) packed onto a single microarray slide

in a dense ordered array of spots. Due to the nature of this data, an important question

of interest is “which genes on a chip are undergoing differential expression between target

mRNA samples?”. This can be addressed as a problem in multiple hypothesis testing, a

simultaneous test of the null hypothesis that there is no association between the expression

levels within each gene and the target mRNA responses of interest. In biological systems

it is likely that the number of genes which change will be small, likewise the proportion of

genes whose expression levels are unaffected will be large. This problem has lead to the

application of false discovery rate(FDR) controlling procedures [21] in microarray analysis

[22] as a suitable method of controlling the amount of error when determining genes

undergoing significant changes. This chapter examines the FDR controlling procedure

of Benjamini and Hochberg, which controls the expected proportion of Type I errors in

a list of rejected hypotheses. The level of control in this procedure is an expectation,

the experimental variance is unknown for any realization of the procedure. To assess

the variability of this procedure, the general operating characteristics of FDR control are

examined.

23
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3.1 Error rate control

Consider the problem of simultaneously testing m null hypotheses Hj, j = 1, . . . ,m. Let

R be the number of rejected null hypotheses. The testing situation is summarized in

Table 3.1, using the notation of Benjamini and Hochberg [21]. The m specific hypotheses

of interest are assumed to be known in advance, but the numbers of true null hypotheses

m0, and alternative hypotheses, m1, are unknown. R is an observable random variable,

while S, T, U, and V are all unobservable random variables. V is the number of Type I

errors, (hypotheses declared significant when they are actually from the null distribution),

and T is the number of Type II errors, (hypotheses declared not significant when they

are actually from the alternative distribution).

Table 3.1: Classification of m hypothesis tests (Benjamini and Hochberg [21]).

# declared not significant # declared significant total

# true null hypotheses U V mo

# non-true null hypotheses T S m1

m−R R m

Standard notation in statistical literature defines α as the probability of committing a

Type I error, and β as the probability of committing a Type II error. The power in

statistical hypothesis testing is defined as the probability, 1 − β, of correctly identifying

non true null hypotheses. As the number of simultaneous hypothesis tests increases, the α

significance threshold must be modified to account for the increasing number of expected

rejections due to chance, so as to maintain a specified level of error rate control. Multiple

comparison procedures (MCPs) are used to determine α based on various criteria. The

observed probabilities are conditional on which hypotheses are actually true. Control of

the Type I error rate under any combination of true and false hypotheses is referred to

as strong control. Weak control refers to control of the Type I error rate when all null

hypotheses are true.

3.1.1 Family wise error rate

The family wise error rate (FWER) as described in [23] is defined as the probability of

making at least one Type I error,

FWER = P (V ≥ 1)

= 1− P (V = 0).
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In multiple hypothesis testing under FWER control, as the number of hypothesis tests,

m, increases, the p-value rejection threshold, α, decreases toward 0, thus providing a

high level of certainty in the rejected null hypotheses at the expense of the rejection

threshold being overly conservative. In the context of microarray experiments, FWER

control against a single false positive is typically too strict, which leads to many missed

detections [24]. Multiple comparison procedures which identify as many significant genes

as possible while minimizing the proportion of false positives are likely to be far more

powerful.

3.1.2 False discovery rate

The false discovery rate (FDR) proposed in [21] is the expected proportion of incorrectly

rejected Type I errors in the list of rejected hypotheses. It is a less conservative multiple

comparison procedure with greater power than FWER control, at a cost of increasing the

likelihood of obtaining Type I errors. Using the notation of Benjamini and Hochberg [21],

FDR = E
(

V

R
| R > 0

)
P (R > 0). (3.1)

The procedure proposed by Benjamini and Hochberg [21] for controlling the FDR involves

a stepwise adjustment of ordered p-value statistics obtained from the hypothesis tests.

If P1, P2, . . . , Pm are the ordered p-values for the hypothesis tests H1, H2, . . . , Hm, the

stepwise procedure controlling the FDR below α∗ is given by,

Reject all Hi : i = 1, 2, . . . , k,

where k is the largest i for which Pi ≤
i

m
α∗. (3.2)

This is a step-up procedure controlling the FDR on the sorted p-values from smallest to

largest, a similar step-down procedure achieves almost identical results [25] by controlling

the FDR on the sorted p-values from largest to smallest. In a comparison of Type I

error rates, it can be shown that under for any combination of true null hypotheses,

FDR ≥ FWER. The FDR controlling procedure also provides weak control of the FWER

at level α∗.

Benjamini and Hochberg [21] showed that their stepwise adjustment procedure pro-

vided the following level of FDR control,

FDR ≤ m0

m
α∗ ≤ π0α

∗, (3.3)

where π0 is the proportion of true null hypotheses in m hypotheses of interest. In situations

when π0 is small, the expected FDR will be well below α∗. Depending on the power of the
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hypothesis tests, as π0 approaches 1 the number of rejected hypotheses, R, will decrease

since m0 is large, but the probability of Type I errors in the rejected hypotheses will

increase. Analogous to the FDR, a measure of statistical power in multiple hypothesis

testing can be defined as the expected proportion of correct discoveries, the true discovery

rate (TDR) [26] out of R rejected hypotheses,

TDR = E
(

S

R
| R > 0

)
P (R > 0)

=
[
1− E

(
V

R
| R > 0

)]
P (R > 0)

= P (R > 0)− FDR. (3.4)

In 2001 Finner and Roters [27] proved equality of equation 3.3,

FDR =
m0

m
α∗ = π0α

∗. (3.5)

Perfect knowledge of the proportion π0 of true null hypotheses (i.e. how many m0, out of

m hypothesis tests were true), allows constant FDR control over a range of π0 ∈ (α∗, 1) so

that FDR = α∗/π0. This is known as adaptive control of the FDR [28, 29]. In practice, π0

is generally unknown during hypothesis testing, therefore adaptive control relies on good

estimation of π0.

FDR control at the level α∗ provides a list of rejected hypotheses where the expected

proportion of false discoveries is controlled at π0α
∗ under non-adaptive control, and at the

constant threshold level α∗ under adaptive control. The false non-discovery rate (FNDR)

[30] investigates the expected proportion of false non-discoveries (Type II errors) obtained

in the list of rejected hypotheses under the FDR procedure in 3.2. The FNDR equation

is similar to the FDR equation in 3.1 where,

FNDR = E

(
T

(m−R)
| (m−R) > 0

)
P ((m−R) > 0). (3.6)

This is the expected proportion of missed findings when testing m null hypotheses.

3.1.3 Simulation sufficient statistics

Hypothesis testing simulation studies have been used to generate observations under mul-

tiple hypothesis testing conditions. FDR controlling multiple comparison procedures are

then applied to the observations to characterise operating characteristics of FDR control,

the observed proportion of false discoveries (OPFD). [31]. The approach uses parametric

distributions to generate observations under the null and the alternative hypotheses, sta-

tistical methods are then applied to the generated observations. With knowledge about
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the underlying generating distributions, the unobservable random variables under hy-

pothesis testing in Table 3.1 become observable random variables under simulation. The

sufficient statistics required to generate all the information within Table 3.1 are the ob-

served counts v and t for the number of Type I and Type II errors, along with m, the

number of hypothesis tests, and either π0 or m0 where,

U = m0 − V

= π0m− V,

S = (m−m0)− T

= (1− π0)m− T. (3.7)

In multiple comparison procedures with acceptable power, usually V < U and T < S,

so it is most computationally efficient to store the observed counts v and t (R code in

Appendix A.5).

3.1.4 Observed proportion of false discoveries

From equation 3.1, the OPFD is defined as,

OPFD =


V
R

R > 0

0 R = 0.
(3.8)

Figure 3.1 illustrates the general characteristics of the OPFD distribution under non-

adaptive and adaptive control as a function of π0 using the step-up procedure at the

α∗ = 0.05 level. The distributions were estimated by 1000 simulations of m = 10, 000

independent observations, at each value of π0 = (0, 0.005, . . . , 1), generated from a mixture

of two normal distributions as follows,

xi ∼ N(µi, 1), i = 1, . . . ,m,

µi =

 0 if xi from H0

µ if xi from HA.
(3.9)

The hypothesis H0: µ = 0 was tested against µ 6= 0 for each of the m observations at the

α∗ = 0.05 level.

Under non-adaptive control the E[OPFD] is centered about π0α
∗, which agrees with the

result of Finner and Roters [27], while under adaptive control (assuming perfect knowledge

of π0) the E[OPFD] is centered about α∗ over the range of π0 ∈ (α∗, 1). Under both

methods of FDR control variability increases in the OPFD distribution as π0 → 1. An

interesting artefact in the E[OPFD] under non-adaptive control is that π0 = α∗ when
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Figure 3.1: The OPFD distribution as a function of π0 under non-adaptive and adaptive control at the
α∗ = 0.05 level, simulated from a mixture of normal distributions over a range of π0 where
µ = 3 under HA in 3.9. Black lines are the E[OPFD], grey lines are 2.5 and 97.5 percentiles
of the OPFD distribution.
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π0 ≤ α∗ with certainty over a line with gradient equal to 1. This is because the threshold

α∗ in the FDR step up procedure 3.2, rejects all null hypotheses when π0 ≤ α∗.

The 2.5 and 97.5 percentiles of the OPFD distribution were calculated to illustrate

observed confidence intervals at the 95% level, they are significantly larger under adaptive

FDR control than under non-adaptive control. The E[OPFD] becomes less stable as

π0 → 1. As the 95% confidence interval increases in size, the proportion of incorrectly

rejected hypotheses either has a high probability of either being large, or is equal to 0 so

as to maintain FDR control at α. Figure 3.2 describes the observed ratio of the adaptive

95% confidence interval divided by the non-adaptive 95% confidence interval. The smooth

spline fit to the simulated ratios infers that under adaptive control, when π0 = 0.1 the 95%

confidence interval is approximately 2.25 times larger than under non-adaptive control.

The observed ratio decreases continuously displaying smooth curvature, as π0 increases.

When π0 = 1, the ratio equals 1 (since π̂0 = 1).
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Figure 3.2: Ratio of the OPFD distribution adaptive 95% confidence interval width divided by the OPFD
distribution non-adaptive 95% confidence interval width as a function of π0. Observed con-
fidence intervals are derived from Figure 3.1, simulated from a mixture of normal distribu-
tions over a range of π0 where µ = 3 under HA in 3.9. The smooth curve is a natural spline
fit.
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3.1.5 Characteristics of non-adaptive control of the FDR

The simulation in subsection 3.1.4 was extended to investigate the general characteristics

of the OPFD distribution for three different distances between the null and alternative

distributions, µ ∈ (1, 2, 3), and different levels of FDR control, α∗ ∈ (0.01, 0.05, 0.1).

Results are presented in Figures 3.3 to 3.8, in a 3× 3 matrix of plot panels of the OPFD

distribution, and other useful measures such as the observed proportion of true discoveries

(OPTD) distribution. From equation 3.4, the OPTD is defined as,

OPTD =


S
R

R > 0

0 R = 0.
(3.10)

In each row of plots α∗ remains constant, and in each column of plots the distance µi,

between the null and alternative distributions remains constant.

Figure 3.3 illustrates how the OPFD changes as a function of π0, conditioned over

different levels of µ and α∗. As µ increases, there is a decrease in the variability of the

OPFD due to the improvement in hypothesis testing sensitivity. As the α∗ threshold level
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Figure 3.3: OPFD distribution for the non-adaptive step-up FDR controlling procedure [21], at
α∗ ∈ (0.01, 0.05, 0.1) levels, simulated from a mixture of normal distributions over a range
of π0 where µ ∈ (1, 2, 3) under HA in equation 3.9. Black lines are the E[OPFD], grey lines
are 2.5 and 97.5 percentiles of the OPFD distribution.
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increases, variability increases in the OPFD. In the first column of plots when µ = 1, the

FDR procedure has limited sensitivity. In plot panels where the α∗ = 0.05, and α∗ = 0.1,

the 95% confidence intervals in the OPFD become highly variable as π0 increases. The

poor sensitivity causes the OPFD to become highly polarized, with the OPFD likely to

be either 0, or large as π0 → 1. The observed distribution v, is also highly variable in

this situation (data not shown). When α∗ = 0.01, even though the OPFD is as expected

along the line E[OPFD] = FDR = α∗π0, greater than 95% of the OPFD observations in
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the confidence interval equal 0 across the whole range of π0. This illustrates that there is

a tradeoff between the choice of α, and the sensitivity in the hypothesis testing.

The OPTD is illustrated in Figure 3.4. In the first column of plots where µ = 1,

the OPTD is very poor, and gets progressively worse as α∗ decreases. When µ = 2, the

sensitivity in hypothesis testing increases dramatically (the E[OPTD] is almost 1 over

most of the range of π0), but drops off quickly as π0 approaches 1. The factor governing

the OPTD in Figure 3.4 is the P (R > 0) term of 3.4, which is much larger than the FDR

term.

Figure 3.5 illustrates the situation when the P (OPFD = 1). The OPFD can only

equal 1 if the multiple comparison procedure makes at least one rejection (R > 0). Any

rejections that are made are all Type I errors. The P (OPFD = 1) increases as π0 → 1,

and the number of rejected truly null hypotheses decreases.

In the first column of plots when µ = 1, the P (OPFD = 1) is significantly higher,

and more variable for moderate to large values of π0. This is due to lower sensitivity in

the multiple comparison procedure. When µ = 2 or greater, the P (OPFD = 1) = 0, over

most of the range of π0, increasing as π0 → 1. As α∗ is increased, a higher proportion of

Type I errors in the rejected hypotheses is observed, and the P (OPFD = 1) increases.

3.1.6 Characteristics of adaptive control of the FDR

Figure 3.6 shows the effect of adaptive control of the OPFD, where π0 is assumed to be

known. Under adaptive control, the OPFD has similar features as under non-adaptive

FDR control, except that FDR control is centered about α∗ for π0 ∈ (α∗, 1). In the bottom

row of plots when α∗ = 0.01, the distribution of the upper 97.5 percentile of the OPFD

distribution shifts to the right in the plot panels (increasing in π0) as µ increases. The

95% confidence interval is unstable because the number of rejections, R, is moderate in

size, with around 2.5% of simulations containing false discoveries for fixed π0. As π0 → 1

there is a point at which P (R = 0) ≈ 1, causing the upper 95% confidence interval to drop

sharply. In Figure 3.7, as π0 increases, the OPTD is initially controlled at 1− α∗. In the

first column of plots when µ = 1, the E[OPTD] decreases rapidly as π0 increases. There

is a point along the range of π0 where the constant E[OPTD] control drops below 1−α∗.

As the level of FDR control α∗ is increased, the location of the threshold point on π0

increases. The OPTD distribution is extremely variable for π0 larger than this threshold.

The P (OPFD = 1) under adaptive FDR control (Figure 3.8) displays almost identical

pattern to Figure 3.5 using non-adaptive control. This implies that the average proportion

of all incorrect hypotheses is similar using either form of FDR control.
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Figure 3.4: OPTD distribution for the non-adaptive step-up FDR controlling procedure [21], at
α∗ ∈ (0.01, 0.05, 0.1) levels, simulated from a mixture of normal distributions over a range
of π0 where µ ∈ (1, 2, 3) under HA in equation 3.9. Black lines are the E[OPTD], grey lines
are 2.5 and 97.5 percentiles of the OPTD distribution.
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Figure 3.5: Probability that the OPFD equals 1 under the non-adaptive step-up FDR controlling proce-
dure [21], at α∗ ∈ (0.01, 0.05, 0.1) levels, simulated from a mixture of normal distributions
over a range of π0 where µ ∈ (1, 2, 3) under HA in equation 3.9. Black lines are the
P (OPFD = 1).
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Figure 3.6: OPFD distribution for the adaptive step-up FDR controlling procedure [28], at
α∗ ∈ (0.01, 0.05, 0.1) levels, simulated from a mixture of normal distributions over a range
of π0 where µ ∈ (1, 2, 3) under HA in equation 3.9. Black lines are the E[OPFD], grey lines
are 2.5 and 97.5 percentiles of the OPFD distribution.
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Figure 3.7: OPTD distribution for the adaptive step-up FDR controlling procedure [28], at
α∗ ∈ (0.01, 0.05, 0.1) levels, simulated from a mixture of normal distributions over a range
of π0 where µ ∈ (1, 2, 3) under HA in equation 3.9. Black lines are the E[OPTD], grey lines
are 2.5 and 97.5 percentiles of the OPTD distribution.
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Figure 3.8: Probability the OPFD equals 1 under the adaptive step-up FDR controlling procedure [28],
at α∗ ∈ (0.01, 0.05, 0.1) levels, simulated from a mixture of normal distributions over a range
of π0 where µ ∈ (1, 2, 3) under HA in equation 3.9. Black lines are the P (OPFD = 1).
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3.2 Estimation of π0

In hypothesis testing, m0, the number of true null hypotheses out of m hypotheses tested

is unknown, therefore the proportion of true null hypotheses π0 must be estimated.

3.2.1 Estimating π0 using natural splines

The distribution of p-values obtained from m hypothesis tests is an unknown mixture of

m0 = mπ0 p-values from the null distribution, and m1 = m(1 − π0) p-values from the

alternative distribution. A method for estimating π̂0 directly from the mixture distribu-

tion of p-values was proposed by Storey [32]. It involves exploiting the fact that under

the null distribution p-values are uniformly distributed, without having to quantify the

distribution of alternatively distributed p-values.

In this method an estimate of π̂0 as a function of λ (a tuning parameter estimating a

threshold of significance), is obtained from the distribution of observed p-values p1, . . . , pm,

π̂0(λ) =
# {Pi > λ}
m(1− λ)

. (3.11)

If all the p-values are from H0, then Pi ∼ U(0, 1), which implies E[# {Pi > λ}] = m(1−λ),

and E[π̂0(λ)] = 1. Under any mixture of p-values, as λ → 1 the estimate of π̂0(λ)

becomes unbiased, with a trade-off of increased variance. Storey [32] uses a bootstrap

approach to select λ for the estimation of π̂0(λ). This method, however has been shown

to possess unfavourable estimation properties [33]. Estimation of π0 in 3.11 can also be

made subjectively by eye directly from a histogram of the mixture distribution of p-values,

or in a fully automated way that utilizes support for the estimate at π̂0(λ = 1) over a range

of λ [34]. Consider a plot of π̂0(λ) versus λ over a range of λ = 1, 0.01, 0.02, . . . , (m−1)/m.

The method of Storey & Tibshirani [34] estimates limλ→1π̂0(λ) = π̂0(1) by fitting a natural

spline to the trend over the range λ ∈ (0, 1) allowing estimation of π̂0(λ = 1). The degrees

of freedom are set to 3 in the natural spline to limit curvature in the fit to a quadratic

function. Note that λ = 1 is undefined in 3.11, so (m − 1)/m is the closest estimable

value of the tuning parameter.

In a preprint of Storey and Tibshirani (2003) [35], a weight of (1 − λ) was applied

to each observation reducing the variance of the estimate of π̂0(1) since π̂0(λ) becomes

more accurate as λ → 0. However, this weighting procedure was not used in the final

version of the paper. In Bioconductor a package called qvalue1 provides programming

routines in R to calculate an automated estimate of π̂0(1) using natural splines. In the

current release (version 1.0), the qvalue function fitting the natural cubic spline does not

weight the observations by (1 − λ) (Appendix A.4). A simulation was carried out to

1Authors: J. D. Storey, G. R. Warnes (maintainer); http://www.bioconductor.org
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test the difference in observed estimates of π̂0(1), when including the 1 − λ observation

weighting. Exclusion of the 1−λ weighting argument in the natural cubic spline increases

the estimated variance considerably, illustrated in Figure 3.9. Due to the bias variance

tradeoff, variation in 95% confidence intervals is larger as π0 → 1. Note that the estimate

π̂0(λ) is generally unbiased under a normal mixture simulation over the entire range or

π0. When excluding the 1− λ weighting, there does appear to be a slight downward bias

in the observed estimates of π̂0(1) as π0 → 1.

Figure 3.9: Estimation of π0, comparing the use of 1 − λ natural spline weights in the automated pro-
cedure of Storey and Tibshirani (2003). Simulated p-values are from a mixture of normal
distributions over a range of π0 where µ = 3 under HA in equation 3.9. Black lines are the
observed E[π̂0(1)], grey lines are 2.5 and 97.5 percentiles of the distribution of observed
π̂0(1) values.
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Practitioners must use procedures to estimate π0 from experimental data if adaptive

control of the FDR is desired at the level α∗ = α∗/π̂0. Estimation of π0 depends on the

nature of the data examined and is not a straight forward calculation. Any variation or

bias in the estimate π̂0 will cascade into the observed FDR as a function of π0. Variability

in the observed FDR is greatest when π0 = 1. Experiments that have low sensitivity will

have more variability in desired FDR control.



4
Bayesian Modelling of cDNA

Microarrays

Empirical Bayes analysis was first applied to E. coli cDNA microarray data [16] in 2001

by Newton et al. [36], improving the statistical inference of gene expression changes

on a single analyzed array. The approach models a parametric hierarchy of Gamma

distributions, empirically estimating parameters of interest from the data. An alternative

model using the same methodology was proposed in 2002 by Kendziorski et al. [37],

fitting a hierarchy of Normal distributions on log transformed intensities. In the 2002

paper, both of these modelling approaches were extended to analyze experiments with

replication of spot intensities. In 2003, Newton et al. [38] modified the approach further

by relaxing the parametric assumption in the target mean layer, fitting a data driven

semi-parametric hierarchical model to microarray data.

4.1 Bayesian overview

Bayesian probability theory is named after the 18th century clergyman Reverend Thomas

Bayes (1702-1761) who worked on the “doctrine of chances”. The underlying philosophy

is that the only sensible measure of uncertainty is probability. Probability theory is the

body of knowledge that enables us to reason formally about uncertain events. The most

common view of probability is the classical frequentist approach defining the probability

39
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P of an uncertain event A, written P(A), by the frequency of that event based on previous

observations. Suppose we define the random variable X = x1, x2, ..., xn where x represents

the vector of observations from an experiment, and θ represents the unknown parameters

of interest. The classical modelling approach would be to assume the data come from a

parametric family of distributions and model the likelihood f(x|θ), a function of the data,

x, given the unknown fixed parameters, θ.

Bayesians treat parameters as random variables from a parametric family of distribu-

tions, any prior belief about θ is characterised in the prior distribution π(θ). The posterior

distribution π(θ|x) represents the updated belief about θ given the actual data observed

from the experiment. Bayes Theorem relates the posterior distribution to assumptions

made about the prior belief , and the likelihood of the data.

4.1.1 Bayes Theorem for random variables

Let B1, B2, ..., Bm form a set of mutually exclusive and exhaustive events in S. Then for

any event A, Bayes Theorem states,

P (Bi|A) =
P (Bi ∩ A)

P (A)
=

P (A|Bi)P (Bi)∑m
i=1 P (A|Bi)P (Bi)

.

The updated posterior probability of Bi given event A is P (Bi|A), in the light of the

observed data P (A|Bi) and the prior probabilities P (Bi) about event Bi. Assuming the

distributions have densities, for the random variables X and θ the continuous variable

analogue to Bayes Theorem is,

π(θ|x) =
f(x|θ)π(θ)∫

Θ f(x|θ)π(θ)dθ
,

where π(θ|x) are posterior probabilities of the parameters, θ, given the data, f(x|θ) are

likelihoods of the data given parameters θ, and π(θ) is the prior distribution for the

unknown parameters θ. In practice the denominator does not need to be calculated, it is

a scaling constant ensuring that the sum of all probabilities or area under the posterior

distribution equals one. That is,

π(θ|x) ∝ f(x|θ)π(θ). (4.1)

Simulation is a central part of solving Bayesian problems, due to the relative ease in

which samples can be generated from the data and prior distributions. Large samples of

simulated data can obtain good estimates of summary statistics about unknown posterior

distributions of interest. Certain problems that are mathematically convenient allow

empirical calculation of summary statistics of posterior distributions. Problems with the
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additional property that the posterior distribution follows the same parametric form as

the prior distribution are said to be conjugate. If F is a class of likelihood sampling

distributions p(y|θ), and P is a class of distributions representing prior belief about θ, the

class P is conjugate for F if

π(θ|y) ∈ P for all f(.|θ) ∈ F and π(.) ∈ P . (4.2)

4.2 Modelling a single microarray

The modelling approach described in this section was published by Newton et al. (here-

after NKRBT) on a series of microarray experiments from the E. coli K-12 genome [16].

The entire set of open reading frames was reverse transcribed into cDNA probes and spot-

ted on each microarray slide targeting 4290 genes of interest. Four separate microarray

experiments were conducted comparing different cell lines of interest. Within each mi-

croarray experiment, there was no technical replication of cDNA spots on the microarrays,

that is, each unique cDNA probe was spotted only once on each array.

Each microarray was normalized using a simple total intensity normalization in the

E. coli datasets before analysis. This assumes that the numbers and mass of mRNA

molecules in each sample are similar. First the background intensities of neighbouring

unspotted areas were subtracted from spot foreground intensity values to adjust for slide

surface background differences, and any resulting negative intensity spots in either channel

were removed from further analysis. Defining
˜
x
′
to be the vector of raw intensities from

the cy3 green channel, and
˜
y
′
to the vector of intensities from the cy5 red channel, the

data can be represented as,

˜
x
′
=


x
′
1
...

x
′
m

 ˜
y
′
=


y
′
1
...

y
′
m


where m equals the total number of spots on the microarray. Each intensity value was di-

vided by the sum of all the intensities in that channel, with a scale adjustment multiplying

the resulting intensities by a factor of 105,

˜
x =

˜
x
′ 105∑m

i=1 x
′
i ˜

y =
˜
y
′ 105∑m

i=1 y
′
i

to avoid computational underflow.

Notation used in NKRBT assigned the random variables R and G to represent mea-

sured normalized intensity vectors from the cy5 red and cy3 green fluorescent channels

since in this setting dyes are completely confounded with mRNA target treatments. Stan-
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dard convention relates the red channel to the green channel in graphical exploration of

single microarrays by plotting the cy5 red dye on the y axis. The notation x = G and

y = R for each cell line treatment reflects this.

In competitive hybridization of single cDNA microarrays, the primary comparison of

interest is the relative expression ratio T of the red normalized intensities divided by the

green normalized intensities,

Ti =
Ri

Gi

=
yi

xi

=
y
′
i/
∑m

i=1 y
′
i

x
′
i/
∑m

i=1 x
′
i

=
y
′
i

∑m
i=1 x

′
i

x
′
i

∑m
i=1 y

′
i

.

The normalization adjusts each within gene ratio so that the average ratio across all genes

is equal to 1. After normalization it is assumed that differences between the two dyes in

the target treatments introduced in the experimental process have been removed. The

fluorescent labelling reactions of target mRNA may have different efficiencies for each

species of mRNA, but within gene competitive hybridizations will not be effected. The

naive approach to identifying genes which differentially express is to rank the relative

ratios from highest to lowest, calculating a threshold to identify potential differentially

expressed genes at the beginning and end of the list, expressing upward and downward.

The Bayesian approach proposed by NKRBT models the entire dataset of 4290 genes

represented on the microarray under a parametric hierarchy using an Empirical Bayes

approach, allowing estimation of the unknown parameters of interest from the normalized

intensity measurements derived from the each treatment. A major advantage of this

approach is that it is able to take between gene information into account when estimating

variability.

4.2.1 Sampling distribution for measured expression

The histograms of normalized intensity values in each fluorescence channel are extremely

right skewed and can be parametrically modelled on the raw scale using independent

Gamma distributions for each fluorescent intensity channel. The general form of the

probability density function for the Gamma distribution is,

f(z | a, θz) =
θa

z

Γ(k)
za−1e−az z, a, θz > 0,

with summary statistics,

E[z] = µz =
a

θz

, V ar[z] = σ2
z =

a

θ 2
z

, CV [z] =
µz

σ 2
z

=
1√
a
.

The advantage of the Gamma distribution is that it is extremely flexible, and sup-

ported on the positive number line, with shape parameter a and scale parameter θz.
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Taking the approach of NKRBT, let x and y represent the normalized intensities in either

treatment channel, from which any experimental effects have been removed. Spots under-

going differential expression are assumed to arise from independent Gamma distributions

with common shape parameter, a, but different scale parameters, θx and θy. That is,

x ∼ Γ(a, θx), y ∼ Γ(a, θy).

The coefficient of variation for each intensity channel depends only on the common shape

parameter a, independent of the scale parameters θx and θy which may be quite different

in each intensity channel.

The sampling distribution of measured differential expression T = y/x, is derived

from the joint independent Gamma distributions of the two intensity channels x and

y, with expected target differential expression ratio ρ = µy/µx = θx/θy. The sampling

distribution of T given ρ and a can be derived from the joint distribution of x and y,

f(y, x) =
θa

yθ
a
x

Γ2(a)
ya−1xa−1e−(θyy+θxx)

(4.3)

by specifying an additional dummy variable S, and determining the joint distribution of

T and S,

S = θyy + θxx, T =
y

x

⇒ y =
ST

θx + θyT
, x =

S

θx + θyT

J

(
S, T

y, x

)
=

∣∣∣∣∣∣ θy θx

1
x

− y
x2

∣∣∣∣∣∣ = −θyy + θxx

x2
= −(θx + θyT )2

S

dydx =
S

(θx + θyT )2
dSdT

f(S, T |ρ, a) =
θa

yθ
a
x

Γ2(a)

(
ST

θx + θyT

)a−1 (
S

θx + θyT

)a−1 (
S

(θx + θyT )2

)
e−S

=
θa

yθ
a
x

Γ2(a)

S2a−1T a−1

(θx + θyT )2a
e−S

=
1

Γ2(a)

(
θy

θx

)a
S2a−1T a−1(

1
θx

)2a
(θx + θyT )2a

e−S

=
1

Γ2(a)

(
1

ρ

)a
S2a−1T a−1

(1 + T/ρ)2a
e−S, where ρ =

θx

θy

.
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Integrating out S, the distribution of T is given by,

f(T |ρ, a) =
∫ ∞

0
f(S, T |ρ, a)dS

=
1

Γ2(a)

(
1

ρ

)a
T a−1

(1 + T/ρ)2a

∫ ∞

0
S2a−1e−SdS

=
Γ(2a)

Γ2(a)

(
1

ρ

)a
T a−1

(1 + T/ρ)2a

=
Γ(2a)

Γ2(a)

(
1

ρ

)
(T/ρ)a−1

(1 + T/ρ)2a
for T > 0. (4.4)

If there is no differential expression then ρ = 1, and f(T |ρ = 1, a) will depend on a only.

For large values of T the tail of the distribution will be asymptotic to 1/T (a+1). The

restriction a > 1 implies that,

f(T | ρ = 1, a) ∝ (T )a−1

(1 + T )2a

∝ 1

T (a−1)
for T � 1.

To consider statistical analysis on the sampling distribution T = y/x alone, however,

results in a loss of information, as T = y/x contains no information about S = xy. Under

no differential expression with ρ = 1, and a common scale for the sampling distributions

of x and y, NKRBT show that the distribution of T given S is proportional to

f(T | S, θ, a) ∝ 1

T
e
−θ
√

S

(√
T+ 1√

T

)
.

The magnitude of S effects the variation in T , for small S there will be greater variation in

T , since suggesting that at low expression levels there are greater amounts of measurement

error from multiple sources of variation in the microarray experiment. Actual data from

the NKRBT E. coli control microarray, illustrates the dependence of T on S, as shown in

Figure 4.1. Due to the highly skewed nature of the intensities, loge(T ) versus loge(S) is

also plotted. As the strength of the signal in S increases, it can be seen that variability

in T decreases.

4.2.2 Posterior distribution of differential expression

NKRBT make the prior assumption that the scale parameters θy and θx under differen-

tial expression are themselves sampled from a Gamma distribution, with common shape

parameter a0, and scale parameter λ,

θy ∼ Gamma(ao, λ), θx ∼ Gamma(ao, λ).
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Figure 4.1: E. coli control dataset [16]. (i) T versus S, As S increases the magnitude of T also de-
creases. (ii) loge(T ) versus loge(S), this is equivalent to a plot of M versus 2A.
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Deriving the posterior distributions, π(θz|z), for either target intensity channel yields,

π(θz | z) ∝ f(z | θz)π(θz)

∝ θa
ze
−zθzθao−1

z e−θzν

∝ θa+ao−1
z e−θz(z+ν).

The posterior distribution is a conjugate Gamma distribution, so for each intensity channel

the distributions of the scale parameters are given by,

θy | y ∼ Gamma(a + ao, y + ν)

θx | x ∼ Gamma(a + ao, x + ν).

The expected value of the ratio of posterior Gamma distributions is

E

(
θx|x
θy|y

)
=

y + ν

x + ν
.

The posterior distribution of ρ given the intensity data, and η = (a, ao, ν) is derived from
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4.4, as follows,

π(ρ | y, x, η) ∝ (y + ν)

(x + ν)

−1

 ρ
(y+ν)
(x+ν)

a+ao−1

1 +
ρ

(y+ν)
(x+ν)

2(a+ao)

ρ−2(a+ao)

ρ−2(a+ao)

∝ (y + ν)

(x + ν)

−1
 1

(y+ν)
(x+ν)

a+ao−1
ρ(a+ao−1)ρ−2(a+ao)(

1
ρ

+ x+ν
y+ν

)2(a+ao)

∝ ρ−(a+ao+1)

(
1

ρ
+

x + ν

y + ν

)−2(a+ao)

. (4.5)

The posterior distribution in 4.5 is proportional to the distribution of the ratio of two

independent Gamma distributions. NKRBT proposed the following Bayesian posterior

summary statistic, ρ̂B, to characterize the posterior distribution of ρ,

ρ̂B =
y + ν

x + ν
.

The ratio ρ̂B depends on ν, the common scale parameter from the target Gamma differen-

tial expression distributions. This statistic is a shrinkage estimator. If the signal in both

channels is small, the ratio will be attenuated significantly by the parameter ν, whereas if

the signal in both channels is large, ν will have less influence and the estimate of ρ̂B will

be closer to ρ̂N = y/x. This choice of summary estimator is for computational simplicity,

as ρ̂B lies between the mode and the mean of the posterior distribution, as illustrated in

Figure 4.2.2.

Figure 4.2: Bayes posterior estimate ρ̂B lies between the Mode and the Mean of the posterior distribu-
tion in equation 4.5.
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The approach taken by NKRBT to estimate the unknown parameters η = (a, ao, ν) uses

the maximum likelihood of the observed data to obtain empirical parameter estimates of η.

If spot intensities are differentially expressed it is assumed that they have different scale

parameters, θx and θy, and are independently derived from separate Gamma sampling
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distributions. The joint probability of differential expression (denoted by DE) is,

PDE(x, y) = P (x) · P (y).

The marginal distributions for each intensity channel are derived by integrating out uncer-

tainty in the joint distribution of each channel of intensity data, and the scale parameters

for θx and θy. The marginal distributions of x and y are prior predictive distributions,

prior since the distributions are not conditional on previous observations, and predictive

of a distribution that is observable. Denoting z as the observed intensity data in either

target channel,

P (z) =
∫

θz

f(z, θz)dθz =
∫

θz

f(z|θz)π(θz)dθz.

The marginal distributions for normalised intensity data in either channel are derived by

integrating out uncertainty in the scale parameter θz for the observed likelihood and prior

distribution,

P (z) =
∫

θz

f(z|θz)π(θz)dθz

=
∫ ∞

0

θa
z

Γ(k)
za−1e−az νa

o

Γ(k)
θao−1

z e−aoθzdθz

=
νaoza−1

Γ(a)Γ(ao)

∫ ∞

o
θ(a+ao−1)

z e−θz(z+ν)dθz

=
Γ(a + ao)

Γ(a)Γ(ao)

νaoza−1

(z + ν)a+ao
,

and the joint distribution of x and y derived from independent Gamma sampling distri-

butions under differential expression is

PDE(x, y) = P (x).P (y)

=
∫

θx

f(x|θx)π(θx)dθx ·
∫

θy

f(y|θy)π(θy)dθy

=
Γ(a + ao)

Γ(a)Γ(ao)

νaoxa−1

(x + ν)a+ao
· Γ(a + ao)

Γ(a)Γ(ao)

νaoya−1

(y + ν)a+ao

=

(
Γ(a + ao)

Γ(a)Γ(ao)

)2
(ν)2ao(xy)(a−1)

[(x + ν)(y + ν)](a+ao)
. (4.6)

After integrating out uncertainty in the gene specific scale parameters, θx, and θy, to

estimate marginal distributions in each channel, the marginal likelihood, l(a, ao, ν), can
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be maximised to estimate the unknown parameters of interest, η = (a, ao, ν) as follows,

l(a, ao, ν) =
m∑

k=1

log PDE(xk, yk)

= 2m[log Γ(a + ao)− log Γ(a)− log Γ(ao) + ao log(ν)]

+
m∑

k=1

[(a− 1)(log(r) + log(g))− (a + ao)((r + ν)(g + ν))] .

4.2.3 Gamma-Gamma-Bernoulli model

NKRBT use the Gamma-Gamma-Bernoulli (GGB) model to add a third discrete layer.

Here each gene arises from either a differentially expressed distribution PDE(x, y), or an

equivalently expressed (denoted by EE) distribution PEE(x, y) , from assumed Bernoulli

sampling. Under equivalent expression the scale parameters for each sampling distribution

are derived from the same prior distribution,

PEE(x, y) =
∫

θ
f(x, y | θ)π(θ)dθ

=
∫

θ
f(x | θ) · f(y | θ)π(θ)dθ

=
∫

θ

θa

Γ(k)
xa−1e−ax · θa

Γ(k)
ya−1e−ay · νa

o

Γ(k)
θao−1e−aoθdθ

=
(xy)a−1νao

Γ2(a)Γ(ao)

∫
θ
θ(2a+ao−1)e−θ(x+y+ν)dθ

=

(
Γ(2a + ao)

Γ2(a)Γ(ao)

)
(ν)ao(xy)(a−1)

[(x + y + ν)](2a+ao)
. (4.7)

The marginal likelihood, l(a, ao, ν) can be maximised to estimate the unknown parameters

of interest η = (a, ao, ν), as follows,

l(a, ao, ν) =
m∑
k

log P (xk, yk)

= m[log Γ(2a + ao)− 2 log Γ(a)− log Γ(ao) + ao log ν]

+
m∑
k

[(a− 1)(log(x) + log(y))− (2a + ao)(x + y + ν)] .

As the identity of the changed spots is unknown, we observe complete data with incom-

plete mixing of unknown differentially expressed spots.
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4.2.4 EM algorithm

The EM algorithm [39] is applicable to a wide range of problems where incomplete data

is observed. In the case of the Gamma-Gamma-Bernoulli model, the identity of genes

undergoing differential expression is unknown. Assuming each spot, k = 1, . . . ,m rep-

resents a single gene on the microarray, complete data expression patterns for x and y

are observed from either PEE(xk, yk) under equivalent expression, or PDE(xk, yk) under

differential expression, according to an underlying unknown Bernoulli random variable

zk. Assuming the zk’s are independent, then z =
∑

zk, represents the unknown number

of differentially expressed genes. Thus z follows a Binomial distribution with parameters

m and p = P (zk = 1). In this setting the goal is to estimate the probability of differential

expression for the completed data (xk, yk, zk). In two channel microarrays the probability

of equivalent expression is π0 = 1− p. The marginal density of (xk, yk) is

f(xk, yk) =
∑

i

P (xk, yk ∩ zi)

=
∑

i

P (Zi)P (xk, yk|zi)

= P (Z = 0)f(xk, yk|Z = 0) + P (Z = 1)f(xk, yk|Z = 1)

= p.pA(xk, yk) + (1− p).p0(xk, yk). (4.8)

The completed data density function is

f(xk, yk, zk) = (p.pA(xk, yk))
zk((1− p).p0(xk, yk))

1−zk

= pzk .(1− p)1−zk .pA(xk, yk)
zk .p0(xk, yk)

1−zk ,

and the complete data log likelihood is given by,

lc(a, ao, ν, p) = log
n∏

k=1

f(xk, yk, zk)

=
m∑

k=1

{zk log p(xk, yk) + (1− zk) log p0(xk, yk)

+ zk log(p) + (1− zk) log(1− p)}. (4.9)

The EM algorithm is a two step iterative estimation process. In iteration i+1, the first

step is to find the expected value of the complete data log likelihood given the estimate

p(i) of the previous iteration,

zk = E[zk|xk, yk]

= P (zk = 1|xk, yk)
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=
f(z = 1 ∩ xk, yk)

f(xk, yk)

=
p.pA(xk, yk)

p.pA(xk, yk) + (1− p).p0(xk, yk)
. (4.10)

The updated estimate p(i+1) is the value maximising the Binomial component pz(1−p)n−z

from the completed likelihood, where,

p(i+1) =
z

m

=
1

m

m∑
k=1

zk

=
1

m

m∑
k=1

p.pA(xk, yk)

p.pA(xk, yk) + (1− p).p0(xk, yk)
.

The second step is to use the updated estimate of p(i+1) to maximise the complete data

log likelihood, which maximises the expectation found in the first step to obtain updated

parameter estimates for η = (a, ao, ν). NKRBT further stabilizes the computations by

assuming a Beta(2, 2) prior distribution for p, and calculating a posterior update for p.

The assumption is made the zk are exchangeable, invariant to permutations of the indices,

modelled independently and identically distributed.

4.2.5 Computational considerations in the EM algorithm

NKRBT used the Splus (Statistical Sciences, 1993)[40] optimization function nlminb

to maximize the log likelihood of the Gamma-Gamma-Bernoulli models. These results

are reproduced using here the open source software R and the equivalent optimization

function optim. The optimization functions obtain new parameter estimates for η from

the maximization step of the EM algorithm by minimizing the negative log likelihood

in 4.9. The input arguments required are the negative log likelihood function to be

minimized, and initial estimates of η. Results in NKRBT used fixed initial values (FIV) of

η = (10, 1, 1) at every maximization step of the EM algorithm. This analysis was repeated

on the IPTG-a microarray using the current estimates (CE) of η in the optimization

function during each iteration of the EM algorithm. The modified EM algorithm produces

estimates for η which were slightly different than those of NKRBT. A comparison between

the two EM models is provided in Table 4.1. Using FIV during each maximization step

affected convergence slightly. To reach convergence, the optimizer functions minimize η

to within a certain tolerance which will be obtained in less iterations if the initial values

are closer to the optimized solution. If the sum of these gene probabilities is significantly

different using FIV versus CE in the EM algorithm, it is possible that the rank order of the

individual gene probabilities could also change in position, depending on the optimization
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Table 4.1: E coli. IPTG-a microarray using different optimization initial values.

a ao ν p

FIV 12.535 0.816 0.371 0.00688
CE 12.569 0.816 0.369 0.00695
% difference 0.273 −0.050 −0.380 1.01039

function initial values used during computation.

Figure 4.3 illustrates the ranking changes of the first 100 predicted differentially ex-

pressed genes in the Gamma-Gamma-Bernoulli model using CE versus FIV in the IPTG-a

microarray. The individual probabilities of differentially expressed genes from the FIV

Gamma-Gamma-Bernoulli model were ranked from first to last and plotted on the x axis,

while the number of similarly ranked genes from the CE Gamma-Gamma-Bernoulli model

was calculated and plotted on the y axis. Lines have been added at points in the step

function where the gene ranking has changed across the two methods . If computation

of the Gamma-Gamma-Bernoulli model used FIV in the maximization step, a list of

differentially expressing genes could potentially exclude a candidate due to the bias in

the maximization step. As this problem is associated with numerical approximation, the

effect is likely to increase as the number of genes on the microarray increases.

Figure 4.3: Effect of ranking on the first 100 genes, comparing similarly ranked genes under CE to FIV
in the EM algorithm. Vertical dotted lines show points where gene ranking changes.
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4.3 Modelling replicate microarrays

There are two major ways that cDNA probes can provide multiple within gene intensity

measurements on microarrays. Unique cDNA species can be spotted multiple times on a

microarray allowing competitive hybridization to take place with equal probability for all

technical replicates. Dye swaps are a common design which provide additional within gene

information eliminating any dye bias effects. It is assumed that a suitable preprocessing

technique has been used to adequately combine and normalize multiple intensity values

derived from the replication of cDNA probes or multiple experimental runs of the same

microarray information.

Consider a set of microarray experiments, with n1 replicate measurements in the first

treatment cell line, and n2 replicate measurements in the second treatment cell line. If

there are m transcripts spotted on any microarray targeting individual genes, the matrixes

X and Y , contain the spot intensity information for both treatment channels,

X =


x11 . . . x1n1

...
. . .

...

xm1 . . . xmn1

 Y =


y11 . . . y1n2

...
. . .

...

ym1 . . . ymn2

 .

For a particular gene, i there are n1 within gene replicate measurements for xi, and n2

within gene replicate measurements for yi where xi = (xi1, . . . , xin1), and yi = (yi1, . . . , yin1).

The number of within gene replicate measurements is assumed to be constant over genes

Under differential expression, Kendziorski et al. [37] show that the sampling distribu-

tion for each treatment intensity channel is the product of independent gamma distribu-

tions. Defining Z as being the normalised intensities from either channel,

fDE(Z) =
∫

θz

f(Z|θz)π(θz)dθz

=
∫

θz

n∏
j=1

(
θa

z

Γ(k)
za−1
·j e−az·j

)
νa

o

Γ(k)
θao−1

z e−aoθzdθz

=

∏n
j=1 za−1

·j νao

Γn(a)Γ(ao)

∫
θz

θ(na+ao−1)
z e−(ν+

∑n

j=1
z·j)θzdθz

= Kn ·
∏n

j=1 za−1
·j

(ν +
∑n

j=1 z·j)na+ao
, (4.11)

where

Kn = νao
Γ(na + ao)

Γn(a)Γ(ao)
.

Under differential expression the joint distribution of X and Y arises independently from
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π(θ),

fDE(X, Y ) = f(X) · f(Y )

=
∫

θx

f(X|θx)π(θx)dθx

∫
θy

f(Y |θy)π(θy)dθy

= Kn1Kn2 ·
∏n1

j=1 xa−1
·j

∏n2
j=1 ya−1

·j

(ν +
∑n1

j=1 x·j)n1a+ao(ν +
∑n2

j=1 y·j)n2a+ao
, (4.12)

while under equivalent expression the joint distribution of X and Y arises from the same

prior distribution π(θ)

fEE(X, Y ) =
∫

θ
f(X|θ)f(Y |θ)π(θ)dθ

=
∫

θ

n1∏
j=1

(
θa

Γ(k)
xa−1
·j e−ax·j

)
n2∏

j′=1

(
θa

Γ(k)
ya−1
·j′ e−ay·j′

)
νa

o

Γ(k)
θao−1e−aoθdθ

=
n1∏

j=1

xa−1
·j

n1∏
j′=1

ya−1
·j′

νao

Γn1(a)Γn2(ao)Γ(ao)
·

∫
θ

 n1∏
j=1

θae−x·jθ

 n2∏
j′=1

θae−x·j′θ

 θao−1e−θνdθ

= K ·
∏n1

j=1 xa−1
·j

∏n1
j′=1 ya−1

·j′

(ν +
∑n1

j=1 x·j
∑n1

j′=1 y·j′)n1a+n2a+ao
, (4.13)

where

K =
νaoΓ(n1a + n2a + ao)

Γn1(a)Γn2(a)Γ(ao)
.

Equations 4.12 and 4.13 are multiple replicate extensions of equations 4.6 and 4.7 which

can be substituted into the E step (equation 4.10), and the M step (equation 4.9) of

the EM algorithm. The sufficient statistics required to estimate the Gamma-Gamma-

Bernoulli model are the number of replicates within each channel, and the within gene

products and summations of normalized intensity values. Computationally it is easier to

obtain these statistics on the log scale, back-transforming intensity values as required.

4.3.1 Bayesian adaptive FDR estimation

Newton et al. [38] provide an approach for controlling the adaptive false discovery rate

from gene lists obtained by posterior probability in their Bayesian analysis of microarray

data. The goal is to correctly identify a list of genes of size J predicted to be differen-

tially expressed while controlling the rate of false discoveries at probability level α∗, and

maximising the size of the list.

Within the Bayesian framework, P (zk = 1|xk, yk, p) is the posterior probability of dif-
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ferential expression for each gene. If a gene has a high posterior probability of being

differentially expressed, it has a low posterior probability, P (zk = 0|xk, yk, p), of being a

Type I error where,

P (zk = 0|xk, yk, p) =
(1− p)PEE(xk, yk)

pPDE(xk, yk) + (1− p)PEE(xk, yk)
.

Let J(κ) be the size of the list of predicted differentially expressed genes as a function of

a significance threshold, κ, where,

J(κ) = {g ∈ (1, 2, . . . N) : P (zk = 0|xk, yk, p) ≤ κ} . (4.14)

J(κ) is a measure of the observed number of hypotheses declared significant, and thus is

an estimate of the observable random variable R in Table 3.1. Under multiple hypoth-

esis testing, the unobservable random variable V is estimated by summation of all the

unique gene probabilities contained in the list J(κ). This is the expected number of false

discoveries, denoted #FD by NKRBT,

E [#FD] =
∑

g∈J(K)

P (zk = 0|xk, yk, p). (4.15)

In a list containing all m genes where J(κ = 1), the expected number of false discoveries

equals m0. Equations 4.14 and 4.15 are used to estimate the proportion of false discoveries

V/R, under adaptive FDR control for a α∗ threshold level so that,

E[#FD|xg, yg]

J(κ)
≤ α∗. (4.16)

This is similar to control of the positive FDR in [41], except in the Bayesian context the

expectations are conditional on the observed data. Note, FDR control in equation 4.16

requires unique gene probabilities in the numerator associated with unique values of J(κ),

a measure of gene list size based on the unique posterior probability threshold κ. If this is

not the case, a situation can occur where the FDR threshold splits posterior probabilities of

the same magnitude into two groups of equivalently expressed and differentially expressed

genes.

4.4 Simulation of normalized microarrays

Three models simulating microarray datasets (with no experimental effects present) were

investigated for statistical comparisons between the analysis approaches outlined in chap-
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ter 5. The first two hierarchical models simulate from the Gamma-Gamma-Bernoulli and

Log-Normal-Normal models based on the work of Newton et al. [36] and Kendziorski et

al. [37]. The third hierarchical model is a Gamma-Uniform-Bernoulli model [38].

Each of these models consists of a three layer hierarchy. The top layer is discrete;

with genes coming from a differentially expressed parametric distribution (DE), or an

equivalently expressed parametric distribution (EE). In the middle layer, measured spot

intensities are assumed to vary around some mean value, modelled by a parametric distri-

bution. The actual measured spot intensities in the bottom layer are derived from another

parametric distribution which accounts for measurement error within the arraying process.

In these simulation scenarios, tracking the identity of equivalently expressed and dif-

ferentially expressed genes, allows validation between statistical models analyzing the

simulated datasets.

4.4.1 Gamma-Gamma-Bernoulli model

The actual measured spot intensities are sampled from a Gamma(a, θ) distribution. The

target mean intensities, θ, are sampled from a Gamma(ao, ν) distribution. θ is assumed

to be the same for each treatment condition under equivalent expression, and different

for each treatment channel under differential expression,

Xi ∼ Γ(a, θx), Yi ∼ Γ(a, θy)

Equivalent expression (EE) : θ ∼ Γ(ao, ν), where θx = θy = θ

Differential expression(DE) : θx, θy ∼ Γ(ao, ν).

This model adequately describes increasing measurement error as the normalized intensity

signal decreases, Gamma models have positive support on the measured intensity range,

and are flexible and scaleable distributions. They graphically display realistic structure

in M versus A plots. Figure 4.4 provides a simulation example with parameters η = (a =

12.53, a0 = 0.82, ν = 0.37, p = 0.007). These are based on the IPTG-a E. coli experiment

[16] fitting a Gamma-Gamma-Bernoulli Empirical Bayes model to the dataset.

4.4.2 Log-Normal-Normal-Bernoulli model

The simulation for the log-normal-normal model is on the log-intensity scale. The actual

measured spot log-intensities are sampled from a N(µ, σ) distribution. The target mean

intensities µ, are sampled from a N(µ, τ) distribution as follows,

Xi ∼ N(µx, σ), Yi ∼ N(µy, σ)

Equivalent expression (EE) : µ ∼ N(µ, τ), where µx = µy = µ
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Figure 4.4: Simulated dataset (m=1000 genes) from a Gamma-Gamma-Bernoulli Hierarchy, η = (a =
12.53, a0 = 0.82, ν = 0.37, p = 0.007). Equivalently expressed spots are coloured grey,
differentially expressed spots are black.
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Differential expression(DE) : µx, µy ∼ N(µ, τ).

Figure 4.5 provides a simulation example with parameters η = (µ = 2.37, σ2 = 0.05, τ 2 =

1.73, p = 0.007). These are based on the IPTG-a E. coli experiment [16] fitting a Log-

Normal-Normal Empirical Bayes model to the dataset. [37].

Figure 4.5: Simulated dataset (m=1000 genes) from a Log-Normal-Normal-Bernoulli Hierarchy, η =
(µ = 2.37, σ2 = 0.05, τ2 = 1.73, p = 0.007). Equivalently expressed spots are coloured
grey, differentially expressed spots are black. Note the symmetry in the simulation.
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Using normal distributions in the middle and bottom layers of the hierarchy creates sym-

metry in observed simulations from the Log-Normal-Normal model. The mass of the

log-intensities lies in the centre of the plots in Figure 4.5. This is not likely to be the case

in real microarray datasets, as marginal log-intensities from either intensity channel are

likely to be right skewed.

4.4.3 Gamma-Uniform-Bernoulli model

This model is based upon a similar approach by Newton et al. [38]. In the Gamma-

Uniform-Bernoulli model, the spot intensities are sampled from a Gamma(a, θ) distribu-

tion. The target mean intensities are derived from uniform distributions on an M versus

A transformed scale [10]. The difference in log expression between the two treatments,

M , equals 0 in the target mean intensity layer under equivelent expression, while under

differential expression, M is sampled from a U(−3, 3) distribution. A is a measurement

of abundance of the combined intensity channels, under both equivalent expression and

differential expression it is sampled from a U(−3, 8),

Xi ∼ Γ(a, 2(A−M/2)), Yi ∼ Γ(a, 2(A+M/2))

Equivalent expression (EE) : A ∼ U(−8, 3), M = 0

Differential expression(DE) : A ∼ U(−8, 3), M ∼ U(−2.5, 2.5). (4.17)

Newton et al. (2003) [38] chose the uniform layer modelling the mean target intensity

layer because it roughly approximates relationships in observed microarray examples.

Figure 4.6 provides a simulation example with the bottom layer Gamma parameter

η = (a = 12.53, p = 0.007). These are based on the IPTG-a E. coli experiment [16] fitting

a Log-Normal-Normal Empirical Bayes model to the dataset. [37]. Note the uniform

pattern of equivalently expressed spots in the MA-plot of Figure 4.6, which translates up

the diagonal of the log2(y) versus log2(x) plot.

The ranges of the uniform distributions in the target mean intensity layer are different

from the ranges of the observed intensities on the MA scale. The Gamma sampling in

the bottom layer shifts the intensities upwards, as seen in the range of observed average

intensity A, on the x-axis of the MA plot (Figure 4.6).
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Figure 4.6: Simulated dataset (m=1000 genes) from a Gamma-Uniform-Bernoulli Hierarchy, η = (a =
12.53, p = 0.007). The mean intensity layer is sampled from the uniform distribution on the
MA log-intensity scale. Equivalent expression (EE) : A ∼ U(−8, 3), M = 0. Differential
expression (DE) : A ∼ U(−8, 3), M ∼ U(−2.5, 2.5). Equivalently expressed spots are
coloured grey, differentially expressed spots are black.

log2(x)

lo
g 2

(y
)

0

2

4

6

8

0 2 4 6 8
A=0.5(log2(y) + log2(x))

M
=l

og
2(

y)
−

lo
g 2

(x
)

−1

0

1

2

0 2 4 6 8

4.4.4 Model validation

Newton et al. [36] test model validation by plotting a histogram of log-intensities for the

marginal data obtained from each channel. Using the parameters obtained by the EM

algorithm, a Gamma-Gamma-Bernoulli log likelihood fit from the Empirical Bayes analy-

sis was superimposed over the histogram to identify serious departures of the model from

the observed data. Figure 4.7 provides a typical example of one dataset simulated from

each of the scenarios GG-B, LNN-B, and GU-B. Superimposed is the Gamma-Gamma-

Bernoulli log likelihood fit to the simulated dataset. The Gamma-Gamma-Bernoulli EBar-

rays model is an adequate fit to the GG-B, and LNN-B simulated data. Data obtained un-

der GU-B simulation displays significant departures from the Gamma-Gamma-Bernoulli

model fit.
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Figure 4.7: Diagnostic validation plot. Histograms are marginal log-intensities for a single simulated
dataset under GG-B, LNN-B, and GU-B scenarios. Solid line is a log-likelihood fit from
Empirical Bayes using the Gamma-Gamma-Bernoulli model.
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5
Simulation of Microarray Models

5.1 Simulation study

A simulation study was conducted to evaluate the performance of microarray analysis us-

ing the parametric Empirical Bayes methodology (denoted EBarrays) of chapter 4, against

a standard frequentist multiple hypothesis t-test methodology (denoted Multtest). These

analysis methods are available as add-on package libraries in R [18] also named EBar-

rays1, and multtest2. Three simulation scenarios were chosen to compare the performance

of these modelling methodologies. The parameters chosen for each scenario were based

on actual observed Empirical Bayes parameter estimates for the IPTG-a microarray ex-

periment [16] of Newton et al. [36].

I. GG-B scenario: simulating normalized intensities under a Gamma-Gamma-Bernoulli

hierarchy (Section 4.4.1) with Gamma distribution parameters η = (a = 12.53, a0 =

0.82, ν = 0.37) over the range π0 ∈ (0, 1), where π0 governs the proportion of equiv-

alently expressed genes simulated.

II. LNN-B scenario: simulating normalized intensities under a Log-Normal-Normal-

Bernoulli hierarchy (Section 4.4.2) with Normal distribution parameters η = (µ =

2.37, σ2 = 0.05, τ 2 = 1.73) over the range π0 ∈ (0, 1).

1Authors: M. A. Newton & C. M. Kendziorski; http://www.biostat.wisc.edu/∼kendzior
2Authors: Y. Ge & S. Dudoit; version: 1.3.3, http://www.bioconductor.org

60
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III. GU-B scenario: simulating normalized intensities under a Gamma-Uniform-Bernoulli

hierarchy (Section 4.4.3) with Gamma distribution parameter (a = 12.53), and uni-

form on −2.5 ≤ M ≤ 2.5, −8 ≤ A ≤ 3 over the range π0 ∈ (0, 1).

Simulations in all 3 scenarios were conducted for m = 1000 genes, and n1 = n2 = 5

replicates per condition over the range π0 = (0, 0.005, 0.010, . . . , 1), with 1000 microarray

datasets generated for each level of π0. First the underlying hypothesis was simulated

for each gene, then suitable adaptive FDR controlling procedures were applied to the

statistical analysis of simulated datasets. Sufficient statistics (V, T, m, π0) were recorded

to generate the observable random variables in Table 3.1. Based on this information,

observed distributions of false discovery, false non-discovery, sensitivity, and specificity

were examined.

The EBarrays model fitted a Gamma-Gamma-Bernoulli hierarchy to untransformed

intensity data, with no experimental effects present. Prior to simulation it was expected

that EBarrays would perform well under simulation scenario I, adequately under simula-

tion scenario II, and poorly under simulation scenario III, which violates the parametric

mean component.

The multiple hypothesis two sample Welch t-test approach required spot replicate

information either within or between normalized microarrays to provide degrees of freedom

for error estimation in each hypothesis test. Equal variance was assumed between the

two treatment conditions. The two sided t-test was performed for each gene on log2

transformed normalized intensities, assuming normality of sampled spot intensities, by

generating a test statistic for each gene,

ti =
x̄1i + x̄2i√

σ̂2
1i

n1
+

σ̂2
2i

n2

Multiple hypothesis testing assumes independence of within gene t-tests, that is, no infor-

mation sharing between genes. Both models provide predictions of differential expression

for each gene; p-values under Multtest, and probabilities of differential expression under

EBarrays.

Adaptive false discovery rate control [28, 29], was chosen as it guarantees that on

average the OPFD is maintained at the constant level α∗, over π0 ∈ (α∗, 1). Multtest

analysis is naturally suited to non-adaptive FDR control which does not require estimation

of π0, therefore a comparison was made comparing and contrasting the methods Multtest

and EBarrays, by maintaining adaptive FDR control assuming perfect knowledge of π0,

denoted Multtest-P.

In real microarray analysis situations the proportion of equivalently expressed genes is

unknown, therefore adaptive control of the FDR requires an estimate of π0. To facilitate
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calculation of α = α∗/π̂0, additional computation of π̂0 using natural splines, [34] was

incorporated into the analysis (denoted Multtest-E ), to provide adaptive control of the

FDR at α = α∗/π̂0(1). This allowed a further model comparison of Multtest (estimating

π0) to EBarrays.

Analysis under EBarrays used the method of Newton et al. [38] described in 4.3.1 to

control the positive FDR [41] adaptively. This incorporates the Bayesian model estimate

of π0 into the process of adaptive positive FDR control. The statistical software package

R [18] was used to evaluate the performance of the three models; EBarrays, Multtest-P

(assuming perfect knowledge of π0), and Multtest-E (estimating π0). A large amount

of optimization was required to obtain the speed necessary to run more than 200,000

datasets in each of the three data generation scenarios; GG-B, LNN-B, GU-B.

The t-test approach used the mt.teststat function available in the Bioconductor pack-

age multtest to compute t-test statistics for each row of simulated data. This function

was chosen since it incorporates underlying C routines, thus providing a considerable gain

in speed. The EBarrays EM algorithm was written by first principles using the optim

function for the maximization step. This was considerably faster than using Newton

and Kendziorski’s R library [42] EBarrays for Empirical Bayes estimation. Using a Pen-

tium 1.8GHz processor with the Linux Redhat 8.0 operating system, Multtest was able

to analyze approximately 100 datasets per second, and EBarrays was able to analyze

approximately two datasets per second. The EBarrays EM algorithm was limited to eight

iterations, with a slight trade off in parameter estimation accuracy for greater processing

speed (R code in Appendix A.6). Results are presented using lattice3 graphics to display

observed distribution responses versus π0. Each plot is conditioned over the statistical

method used and the 3 simulation scenarios (GG-B, LNN-B, GU-B).

5.2 π0 estimation comparison

Simulation results for π0 estimation comparing and contrasting Multtest with EBarrays

are shown in Figure 5.1. The 2.5 and 97.5 percentiles of the observed distribution of

π̂0 were calculated to illustrate observed confidence intervals at the 95% level. The 95%

confidence intervals in the observed estimates of π0 from the cubic spline procedure in

Multtest were significantly more variable than EBarrays over the entire range of π0 in all

three simulation scenarios.

The EBarrays procedure provided a highly accurate estimate of π0 under the simula-

tion scenarios GG-B, and LNN-B, although a breakdown in fit is evident for the GU-B

simulated data with an upward bias (deviation from the expected dotted line) in the

estimation of π0 as π0 → 0. This bias is caused by the uniform target mean intensity

3Implementation of Trellis Graphics, author: Deepayan Sarkar, http://cran.r-project.org
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component on the M versus A scale under differential expression, which deviates from

the Gamma assumption of the model. Note that when π0 is close to 1, the estimate π̂0

is only slightly biased. The bias in the cubic spline estimate of π0 from Multtest p-values

increases between LNN-B, GG-B, and GU-B simulations, where LNN-B is most suited for

satisfying the Multtest normality assumptions. In all of the Multtest analyses, as π0 → 0

there was a bias variance trade off, where the variance in the 95% confidence intervals

decreases and the estimate becomes biased upwards.

Figure 5.1: Comparison of observed π̂0 estimates versus π0 between EBarrays and Multtest analysis
procedures. Panels are conditioned over simulation scenarios GG-B, LNN-B, and GU-B.
Black lines are the observed E[π̂0], grey lines are 2.5 and 97.5 percentiles of π̂0. Dotted
line depicts the expected estimate as a function of π0.
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Adaptive FDR control at FDR = απ0 was provided by setting α = α∗/π̂0. The

quantity α(π0/π̂0) should be constant in α over all values of π0. Figure 5.2 illustrates the

effectiveness of both modelling approaches aiming for constant control at α = 0.05. The

95% confidence intervals in the observed estimates of π0 from the cubic spline procedure

in Multtest were significantly more variable than EBarrays over the entire range of π0 in

all three simulation scenarios. In all cases Multtest maintained poor control of the FDR

at α = 0.05. As π0 → 0 a large downward bias occured. The observed E[α(π0/π̂0)] was

worst under GU-B dataset generation. EBarrays under the GG-B and LNN-B simulation

scenarios maintained constant control of the FDR at α = 0.05 over most of the range of
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π0. Note that the variability in the 95% confidence intervals increased as π0 → 0. Under

GU-B simulation, EBarrays maintained poor control of the FDR at α = 0.05, at least as

biased as Multtest for the observed E[α(π0/π̂0)]. Note that there was still high precision

in π0 estimation under EBarrays even though the observed estimates were biased.

Figure 5.2: Comparison of observed α(π0/π̂0) versus π0 between EBarrays versus Multtest analy-
sis procedures. Panels are conditioned over simulation scenarios GG-B, LNN-B, and
GU-B. Black lines are the observed E[α(π0/π̂0)], grey lines are 2.5 and 97.5 percentiles of
α(π0/π̂0). Dotted line depicts expected constant control at α∗.
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5.3 EBarrays versus Multtest

The nine plot panels in each of Figures 5.5 to 5.8 are presented with statistical procedures

EBarrays, Multtest-P (assuming perfect knowledge of π0), and Multtest-E (estimating π0)

presented across plot rows, and the three simulation scenarios (GG-B, LNN-B, GU-B)

down plot columns. Observed distribution results for Multtest-E, are more variable than

Multtest-P, due to the associated variability added.

As π0 → 0, the number of differentially expressing genes, m1, converges to m (all genes

differentially expressing), and as π0 → 1, the number of equivalently expressed genes,

m0, converges to m (no genes differentially expressing). In microarray experiments, the
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number of differentially expressing genes is usually a small proportion of the total number

of genes represented on the array. For this reason the region as π0 → 1 is of particular

interest in the observed distributions.

Sensitivity and Specificity

Observed measures of model power, sensitivity, and specificity are presented in Figures

5.3, and 5.4. Sensitivity is related to statistical power, 1 − β, and is defined as the

proportion of correctly identified differentially expressing genes,

Sens =
S

m−m0

.

Specificity is related to 1 − α, and is defined as the proportion of correctly identified

equivalently expressed genes,

Spec =
U

m0

.

The random variables S, U , and m0 are observable values s, u and m0 in each simulation

scenario. Figure 5.3 shows the observed sensitivity comparisons of Multtest with EBar-

rays. The sensitivity decreases sequentially between the simulations scenarios LNN-B,

GG-B, and GU-B, for fixed π0. Within each plot, as π0 increases the observed E[Sens]

decreases, and the width of the 95% confidence intervals increases. In the LNN-B and

GG-B simulation scenarios, the observed E[Sens] is greater for EBarrays than Multtest

over the entire range of π0. Under GG-B simulation, EBarrays outperforms Multtest as

π0 → 1, while the reverse is the case as π0 → 0.

In Figure 5.4, the specificity is similar between EBarrays and Multtest-P under the

GG-B, and LNN-B microarray simulation scenarios. As π0 increases, the specificity con-

verges to 1. The specificity is worst in the GU-B simulation scenario analysed using

EBarrays, where at π0 = 0, the observed average specificity is still about 0.9. Note the

large variability in 95% confidence intervals under Multtest-E as π0 → 0.

5.4 Adaptive FDR comparison

In Figure 5.5, the observed proportion of false discoveries (OPFD) distribution shows

that analysis using EBarrays controls the FDR with less variability than Multtest over

almost the entire range of π0, as illustrated in the widths of the 95% confidence intervals.

The differences between the models are most apparent as π0 → 1. In the EBarrays

model the observed E[OPFD] → 0, whereas with Multtest the observed E[OPFD] is
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Figure 5.3: Observed sensitivity versus π0 for the analysis methods EBarrays, Multtest-P (perfect
knowledge of π0), Multtest-E (estimating π0). Panels are conditioned by the simulation
scenario used; GG-B, LNN-B, GU-B. Black lines are the observed E[Sens], grey lines are
2.5 and 97.5 percentiles of the observed Sensitivity. Dotted lines depicts FDR control at
α∗ = 0.05.
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still controlled at α∗ = 0.05. Using EBarrays analysis, the observed maximum of the

observed 97.5 percentile of GG-B and LNN-B simulations is 0.2 when π0 = 0.995, and

under GU-B simulation is 0.125 when π0 = 0.99. The observed 97.5 percentile is 1

under all simulations using Multtest, as π0 → 1. The observed E[OPFD] is controlled at

α∗ = 0.05 relatively well using Multtest under all simulation scenarios. The E[OPFD]

is controlled at α∗ < 0.05 using EBarrays under the GU-B simulation scenario, with the

lack of fit in the model making the EBarrays FDR threshold appear more conservative.

In the GG-B and LNN-B simulations, as π0 → 0.05 there is a small region (under high

amounts of simulated differential expression) where the 95% confidence intervals of the

Multtest are smaller than under EBarrays. In this region the upper bound of the 95%
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Figure 5.4: Observed specificity versus π0 for the analysis methods EBarrays, Multtest-P (perfect
knowledge of π0), Multtest-E (estimating π0). Panels are conditioned by the simulation
scenario used; GG-B, LNN-B, GU-B. Black lines are the observed E[Spec], grey lines are
2.5 and 97.5 percentiles of the observed Specificity. Dotted lines depicts FDR control at
α∗ = 0.05.
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confidence is largest in EBarrays when π0 = 0.0495. Multtest-E also controls the FDR at

less than α = 0.05 as π0 → 0, due to the upward bias in the natural cubic spline estimate

of π̂0.

The observed proportion of true discoveries (OPTD) is related to the power exhibited

by each statistical procedure (Figure 5.6), where TDR = P (R > 0) − FDR in 3.4. The

EBarrays model exhibits a significant increase in E(OPTD) as π0 → 1, illustrated by the

spike in the mean observed proportion of true discoveries. This is the area of specific

interest in microarray experiments, as only a small proportion of genes differentially ex-

press. As π0 → 0, Multtest-E analysis displays upward curvature in the E(OPTD), due

to the bias in π̂0 estimation. Generally there is greater variability in the OPTD using
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Figure 5.5: OPFD versus π0 for the analysis methods EBarrays, Multtest-P (perfect knowledge of π0),
Multtest-E (estimating π0). Panels are conditioned by the simulation scenario used; GG-B,
LNN-B, GU-B. Black lines are the observed E[OPFD], grey lines are 2.5 and 97.5 per-
centiles of the OPFD. Dotted lines depicts FDR control at α∗ = 0.05.
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Multtest-P over almost the entire range of π0. This is most significant when π0 = 1.

The E(OPTD) is controlled at 1 − α∗ = 0.95 relatively well using Multtest over all

simulation scenarios. The E(OPTD) is controlled at 1−α∗ > 0.95 using EBarrays under

the GU-B simulation scenario, due to the lack of fit caused by the Uniform target mean

intensity component on the M versus A scale under differential expression deviating from

the Gamma model fit.

In the simulations examined, when all simulated genes are equivalently expressed the

probability that the observed proportion of false discoveries equal to 1 increases dramat-

ically. The observed probabilities are presented in Table 5.1. Observed P (FDR = 1) is 5

times larger using Multtest than EBarrays, with at least 4% of observed simulations pre-
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Figure 5.6: OPTD versus π0 for the analysis methods EBarrays, Multtest-P (perfect knowledge of π0),
Multtest-E (estimating π0). Panels are conditioned by the simulation scenario used; GG-B,
LNN-B, GU-B. Black lines are the observed E[OPTD], grey lines are 2.5 and 97.5 per-
centiles of the OPTD.

Proportion of true null hypotheses, π0

O
bs

er
ve

d 
pr

op
or

tio
n 

of
 tr

ue
 d

is
co

ve
rie

s

0.80

0.85

0.90

0.95

1.00

0.0 0.2 0.4 0.6 0.8 1.0

GG−B simulation
EBarrays

LNN−B simulation
EBarrays

0.0 0.2 0.4 0.6 0.8 1.0

GU−B simulation
EBarrays

GG−B simulation
Multtest−P

LNN−B simulation
Multtest−P

0.80

0.85

0.90

0.95

1.00
GU−B simulation

Multtest−P
0.80

0.85

0.90

0.95

1.00
GG−B simulation

Multtest−E
LNN−B simulation

Multtest−E

0.0 0.2 0.4 0.6 0.8 1.0

GU−B simulation
Multtest−E

dicting differentially expressing gene lists that were completely incorrect using the t-test

procedure across all simulation scenarios.

The observed proportion of false non-discoveries (OPFN) generally increases as π0 → 0

(Figure 5.7). In GG-B and LNN-B simulation scenarios, analysis using EBarrays and

Multtest with perfect knowledge of π0 increases to a maximum at π0 = 0.05, with the

95% confidence interval exhibiting most variability at this point. In the GU-B simulation,

under EBarrays analysis the fit of the model causes the observed E[OPFN] → 1 as π0 → 0.

This is also observed under all simulation scenarios using Multtest analysis estimating π0.

Figure 5.8 illustrates the number of hypotheses rejected given that they were differ-
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Table 5.1: Probability that the observed proportion of false discoveries equals 1 when π0 = 1.

GG-B LNN-B GU-B

Multtest Estimating π0 0.048 0.041 0.043
Multtest Perfect Control 0.045 0.041 0.039
EBarrays 0.006 0.003 0.004

Figure 5.7: OPFN versus π0 for the analysis methods EBarrays, Multtest-P (perfect knowledge of π0),
Multtest-E (estimating π0). Panels are conditioned by the simulation scenario used; GG-B,
LNN-B, GU-B. Black lines are the observed E[OPFN], grey lines are 2.5 and 97.5 per-
centiles of the OPFN. Dotted lines depicts FDR control at α∗ = 0.05.
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entially expressing genes. Under GG-B and LNN-B simulation scenarios, the EBarrays

procedure detects a slightly larger number of differentially expressed genes across the

entire range of π0. Under GU-B simulation, the EBarrays procedure outperforms both

forms of Multtest adaptive control when π0 > 0.5, the reverse is the case when π0 < 0.5.
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Figure 5.8: Observed number of differentially expressed genes reported versus π0 for the analysis
methods EBarrays, Multtest-P (perfect knowledge of π0), Multtest-E (estimating π0). Pan-
els are conditioned by the simulation scenario used; GG-B, LNN-B, GU-B. Black lines are
the observed E[S], grey lines are 2.5 and 97.5 percentiles. Dotted line depicts the number
of expected differentially expressed genes as a function of π0. Dashed line is a threshold
at π0 = 0.5, EBarrays predicts more differentially expressed genes as π0 increases above
this threshold.
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5.4.1 Minimal replication

The simulation scenario described in Section 5.1, uses n1 = n2 = 5 replicate spots per

condition. Consider minimal spot replication as being the case where n1 = n2 = 2 for

all spots on each array. A question of interest is, “What effect does minimal replication

of spots have on false discovery rate control between the analysis methods EBarrays

and Multtest?”. The simulations in Section 5.1 were repeated using m = 1000 genes, and

n1 = n2 = 2 replicates per condition over the range π0 = (0, 0.005, 0.010, . . . , 1) to examine

this scenario. Observed distributions that significantly differ from those presented in

Sections 5.3 and 5.4 are presented here. Figures 5.9 to 5.11 examine the effect of minimal

replication under EBarrays and Multtest.

Figure 5.9: Two replicate spots: OPFD versus π0 for the analysis methods EBarrays, Multtest-P (per-
fect knowledge of π0), Multtest-E (estimating π0). Panels are conditioned by the simulation
scenario used; GG-B, LNN-B, GU-B. Black lines are the observed E[OPFD], grey lines
are 2.5 and 97.5 percentiles of the OPFD. Dotted lines depict FDR control at α∗ = 0.05.

Proportion of true null hypotheses, π0

O
bs

er
ve

d 
pr

op
or

tio
n 

of
 fa

ls
e 

di
sc

ov
er

ie
s

0.0

0.1

0.2

0.3

0.4

0.0 0.2 0.4 0.6 0.8 1.0

GG−B simulation
EBarrays

LNN−B simulation
EBarrays

0.0 0.2 0.4 0.6 0.8 1.0

GU−B simulation
EBarrays

GG−B simulation
Multtest−P

LNN−B simulation
Multtest−P

0.0

0.1

0.2

0.3

0.4
GU−B simulation

Multtest−P
0.0

0.1

0.2

0.3

0.4
GG−B simulation

Multtest−E
LNN−B simulation

Multtest−E

0.0 0.2 0.4 0.6 0.8 1.0

GU−B simulation
Multtest−E



5.4 Adaptive FDR comparison 73

The observed proportion of false discoveries (OPFD) distribution (Figure 5.9) shows

significantly greater variability using Multtest than with EBarrays. Under GG-B and

LNN-B simulation scenarios, when π0 > 0.7, the 95% confidence intervals are extremely

variable using Multtest for either form of adaptive FDR control. Under the GU-B simu-

lation scenario, when π0 > 0.4 the 95% confidence intervals in the OPFD are even more

variable using Multtest for either form of adaptive FDR control, assuming perfect knowl-

edge of π0, or estimation of π̂0. The instability in E[OPFD] under Multtest as π0 → 1

is caused by OPFD to bouncing between 0, and a high proportion of false discoveries as

π0 → 1.

In Figure 5.10, the OPTD is now extremely poor under both forms of Multtest adaptive

control. The E[OPTD] decreases quickly at the same thresholds of increasing variability in

the 95% confidence intervals of Figure 5.9. As π0 increases the observed sensitivity (Figure

5.11) drops away rapidly under Multtest for either form of adaptive FDR control. The

sensitivity decreases between LNN-B, GG-B, and GU-B, for fixed π0 across all simulation

scenarios. There is still a threshold on π0, where Multtest outperforms EBarrays as

π0 → 0.

Figure 5.12 illustrates the number of hypotheses rejected given that they were differ-

entially expressing genes for n1 = n2 = 2 replicates. Under GG-B and LNN-B simula-

tion scenarios, the EBarrays procedure detects significantly higher differentially expressed

genes across the entire range of π0. Under GU-B simulation, the EBarrays procedure sig-

nificantly outperforms both forms of Multtest adaptive control when π0 > 0.2, the reverse

is the case when π0 < 0.2.

When there is minimal replication of spots, the amount of information available to

make predictions of genes undergoing differential expression decreases substantially. Fig-

ure 5.11 shows that EBarrays maintains higher sensitivity than Multtest by taking ad-

vantage of between gene information sharing in variance estimation. Sensitivity was dras-

tically reduced in Multtest analysis compared to when the number of spot replicates

n1 = n2 = 5. Under Multtest analysis, as π0 increases, there is an observed threshold on

π0 in each simulation scenario where the observed sensitivity drops below α∗, the level

of FDR control. When this happens the OPFD distribution becomes extremely vari-

able (Figure 5.9), and the E[OPFD] in Figure 5.9 displays increased variability. Under

Multtest-P analysis, sensitivity below α∗ affects the E[OPTD] in Figure 5.10, which starts

to drop away from the constant control at 1− α∗ maintained for small values of π0.
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Figure 5.10: Two replicate spots: OPTD versus π0 for the analysis methods EBarrays, Multtest-P (per-
fect knowledge of π0), Multtest-E (estimating π0). Panels are conditioned by the simula-
tion scenario used; GG-B, LNN-B, GU-B. Black lines are the observed E[OPTD], grey
lines are 2.5 and 97.5 percentiles of the OPTD.
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Figure 5.11: Two replicate spots: Observed sensitivity versus π0 for the analysis methods EBar-
rays, Multtest-P (perfect knowledge of π0), Multtest-E (estimating π0). Panels are condi-
tioned by the simulation scenario used; GG-B, LNN-B, GU-B. Black line is the observed
E[Sens], grey lines are 2.5 and 97.5 percentiles of the observed Sensitivity. Dotted lines
depicts FDR control at α∗ = 0.05.
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Figure 5.12: Two replicate spots: Observed number of differentially expressed genes reported versus
π0 for the analysis methods EBarrays, Multtest-P (perfect knowledge of π0), Multtest-E
(estimating π0). Panels are conditioned by the simulation scenario used; GG-B, LNN-B,
GU-B. Black lines are the observed E[S], grey lines are 2.5 and 97.5 percentiles of
the observed E[S]. Dotted line depicts the number of expected differentially expressed
genes as a function of π0. Dashed line is a threshold at π0 = 0.2, EBarrays predicts more
differentially expressed genes as π0 increases above this threshold.
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What you get out depends on what you put in; and as the grandest

mill in the world will not extract wheat-flour from peascods, so

pages of formulae will not get a definite result out of loose data.

-Thomas Henry Huxley, biologist and writer (1825-1895)

6
Discussion

The main focus of this work was to investigate general characteristics of false discovery

rate controlling procedures in the context of microarray experimentation. Distributional

properties of the observed proportion of false discoveries were critically examined for the

microarray analysis approaches EBarrays and Multtest using a comparable FDR control-

ling procedure.

6.1 Results

In chapter 3, the multiple comparison step-up procedure of Benjamini and Hochberg [21]

was used to apply non-adaptive [21] and adaptive [28, 29] FDR control to simulated

mixtures of normal distributions generated as a function of the mixing proportion π0.

Under non-adaptive FDR control, the E[OPFD] = απ0. This was in agreement with

the result of Finner and Roters [27], illustrating that the OPFD is dependant on the

magnitude of π0. Under adaptive control, the E[OPFD] maintained constant control at α∗

for values of π0 ranging between α∗ and 1. In both multiple comparison step-up procedures

controlling the FDR, increased variability was observed in the OPFD as π0 increased in

magnitude (Figures 3.3, 3.6). As the desired level of control α∗ was increased, or µ (the

location of the alternative hypothesis) decreased, the OPFD increased in variability. In

Figures 3.4, and 3.7, the E[OPTD] decreased as π0 → 1. This was most evident for µ = 1,

in the alternative hypothesis, when the sensitivity in hypothesis testing was lowest. The
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ratio of the confidence interval size between perfect adaptive control, and non-adaptive

FDR control (Figure 3.2) showed an interesting relationship between adaptive and non-

adaptive variability. The observed ratio was largest at π0 = 0.1, estimated to be 2.25 from

the natural spline fit. The ratio decreased as expected to 1, as π0 → 1 exhibiting smooth

curvature. The underlying relationship of variation between adaptive and non-adaptive

control for fixed π0 requires further examination.

The Empirical Bayes approach to modelling microarray datasets [36, 37, 38] was de-

scribed in chapter 4. In Section 4.2.5 it was shown that some care is required when

using the EM algorithm for EBarrays analysis. Further investigation is required to ex-

amine the properties effecting parameter estimation when using fixed initial values in the

maximization step of the EM algorithm.

Simulations of microarray experiments in which no experimental effects were present

were generated in chapter 5 using GG-B, LNN-B, and GU-B simulation models. These

were chosen to examine the strengths and weaknesses when using EBarrays and Multtest

approaches analyzing microarray data. Adaptive control of the false discovery rate was

used to compare both analysis methods directly over the entire range of π0. Multtest

analysis was controlled under two different scenarios; perfect knowledge of π0, and es-

timation of π0. By comparing Multtest using adaptive error rate control (with perfect

knowledge of π0), to EBarrays, the performance of these two approaches was able to be

contrasted. Using the natural spline estimation procedure of Storey & Tibshirani (2003)

to estimate π0, the real world situation of adaptive FDR control in Multtest analysis

was investigated. Higher variability was observed in this estimation procedure than the

estimates of π0 using EBarrays. A significant bias was also observed as π0 decreased in

magnitude (Figures 5.1, 5.2). The increased variability and bias (as π0 decreased) were

evident in the observed characteristics of simulated distributions using π̂0 estimates for

adaptive control in Multtest analysis.

The results in chapter 5 provide strong evidence that EBarrays is a powerful modelling

approach for analyzing microarrays, and is ideally suited to controlling the adaptive false

discovery rate. In simulations where the number of spot replicates n1 = n2 = 5, the

observed sensitivity comparisons between methods were similar (Figure 5.3), likewise the

number of genes rejected given truly differentially expressed were similar (Figure 5.8).

The main differences were in the OPFD and OPTD distributions, between the analysis

methods. In EBarrays, the range of 95 % confidence intervals (as π0 → 1) in the OPFD

were substantially smaller, whereas with Multtest, the 95% confidence interval included

situations where the entire gene list was incorrect (Figure 5.5). EBarrays analysis detected

more true discoveries as π0 → 1, illustrated by the spike in the E[OPTD] in Figure 5.6.

Comparisons between the two techniques were repeated under low replicate conditions

where n1 = n2 = 2. FDR control in EBarrays was found to be far more powerful than
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Multtest in all simulation scenarios tested for moderate to large values of π0 (Figure

5.9). For Multtest, these results suggest that maintaining control at α = 0.05 when the

experimental power is poor, as in analysis of microarray data with only n1 = n2 = 2 spot

replicates, the probability of making false discoveries in the predicted list of differentially

expressing genes is extremely high. This infers that microarray experiments with low

numbers of spot replicates should utilize variance estimation information between genes

to counteract the effects of low replicates. The observed sensitivity of the EBarrays

procedure was also substantially higher in low replicate conditions for moderate to large

values of π0 (Figure 5.11).

Due to the lack of fit to the GU-B simulation scenario, EBarrays analysis maintained

adaptive FDR control at α < 0.05, implying that it is more conservative when structural

features in the data are not adequately captured. The Uniform target mean intensity

layer on the MA scale in GU-B simulations mainly effected the differential expression

component of the EBarrays model as illustrated by the bias in π0 estimation (Figure 5.1).

As π0 increases in magnitude, the uniform target mean intensity layer simulates a higher

proportion of M value components equal to 0. Target mean intensity component back

transformations in 2.5 and 2.6 will have less effect on the EBarrays model estimation

when π0 is close to 1.

Estimation of the proportion of true null hypotheses, π0, is an important factor if

adaptive error rate control is desired in experimental analysis. The EM algorithm frame-

work within EBarrays obtained extremely accurate estimates of π0. Even when modelling

a severely biased simulation scenario such as the Gamma-Uniform-Bernoulli situation, the

estimate of π0 was reasonably unbiased when π0 was large. The poor fit due to the Uniform

mean intensity layer only seriously effected model prediction as π0 decreased in magni-

tude. The procedure of Storey & Tibshirani (2003) [34] which estimated π0 by fitting

natural splines to p-values was found to be far less accurate than the EBarrays estimate

of π0. The bias associated with the natural spline estimate as π0 → 0 shows that there

are serious departures in the fit to hierarchal microarray data simulations. Given that

estimation of π0 is not straightforward, analysis methods of microarray experiments that

are not naturally suited to adaptive FDR control should probably maintain non-adaptive

control of the FDR until an improved π0 estimation technique can be utilized. Under

non-adaptive control, the unknown proportion of equivalently expressing genes is likely

to range between 0.8 and 1, providing an expected level of control between 0.04 and 0.05

for α∗ = 0.05. This is a conservative level of FDR control in microarray experimentation.
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6.2 Future work

Significance analysis of Microarrays (SAM) [43] incorporates a between gene variance

component into the denominator of the pseudo t-statistic during analysis. A compari-

son of EBarrays, and Multtest to SAM methodology would be useful to determine what

benefit the between gene variance component is adding, and how well SAM performs

on simulated microarray data. The semiparametric EBarrays procedure [38] models the

mean intensity layer nonparametrically. The rest of the hierarchal model is identical to

the parametric Gamma-Gamma-Bernoulli model; measured intensities are fitted using

flexible Gamma distributions (which are numerically and analytically convenient), dis-

crete Bernoulli mixing of equivalently expressed, and differentially expressed genes are

modelled. Although computationally more intensive, this model should also be compared

with the models already examined. It is expected that semiparametric EBarrays will fit to

GU-B simulated data well, and generally outperform parametric EBarrays analysis. The

EM algorithm approach of Empirical Bayes methods provides a highly accurate estimate

of π0 when assumptions in the model are reasonably well satisfied. Further investigation

is required to establish if an EM approach can be used to estimate π0 from t-statistics

calculated within gene, in microarray analysis of normalized data.



A
Appendix

A.1 Bioconductor source code

The following R language code determines the class input argument. If the bioconductor

object is of class “marrayRaw”, no calculation is necessary, and log2(R), and log2(G)

values are returned. If the bioconductor object is of class “marrayNorm”, backtransformed

log2(R), and log2(G) values are returned.

maLRp <- function(object)

{

if(class(object) == "marrayRaw")

{

return(maLR(object))

}

else if(class(object) == "marrayNorm")

{

return(maA(object) + maM(object)/2)

}

else

{

stop(paste("object of wrong class:", class(object)))

}

}

maLGp <- function(object)

{

if(class(object) == "marrayRaw")

{

return(maLG(object))
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}

else if(class(object) == "marrayNorm")

{

return(maA(object) - maM(object)/2)

}

else

{

stop(paste("object of wrong class:", class(object)))

}

}

A.2 Package marrayInput source code modifications

This R language code is modified from the marrayInput bioconductor library. The func-

tion read.GenePix calls read.marrayRaw, which scans in multiple Spot of GPR files. Ad-

ditional code has been added to upload the description information; Name and ID. This

is automatically synchronized with intensity information contained with GPR files. Ad-

ditional code chunks are contained between head and cut tags

read.GenePix <-

function (fnames = NULL, path = ".", name.Gf = "F532 Mean", name.Gb = "B532 Median",

name.Rf = "F635 Mean", name.Rb = "B635 Median", name.W = NULL,

layout = NULL, gnames = NULL, targets = NULL, notes = NULL, name.NAME="Name",

name.ID="ID", skip = 0, sep = "\t", quote = "", ...)

{

if (is.null(fnames))

fnames <- dir(path = path, pattern = paste("*", "gpr",

sep = "."))

y <- readLines(file.path(path, fnames[1]), n = 100)

skip <- grep(name.Gf, y)[1] - 1

if (is.null(notes))

notes <- "GenePix Data"

print(skip)

mraw <- read.marrayRaw(fnames = fnames, path = path, name.Gf = name.Gf,

name.Gb = name.Gb, name.Rf = name.Rf, name.Rb = name.Rb,

name.W = name.W, layout = layout, gnames = gnames,

targets = targets, notes = notes, skip = skip, sep = sep,

quote = quote, name.NAME = name.NAME, name.ID = name.ID,

...)

return(mraw)

}

read.marrayRaw <-

function (fnames, path = ".", name.Gf, name.Gb = NULL, name.Rf,

name.Rb = NULL, name.W = NULL, layout = NULL, gnames = NULL,

targets = NULL, notes = NULL, skip = 0, sep = "\t", quote = "",

name.NAME=NULL, name.ID = NULL,

...)

{

if (is.null(path))

fullfnames <- fnames

else fullfnames <- file.path(path, fnames)

# fname <- fullfnames[1]

Gf <- Gb <- Rf <- Rb <- W <- Name <- ID <- NULL
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if (is.null(name.Gb))

Gb <- matrix(0, 0, 0)

if (is.null(name.Rb))

Rb <- matrix(0, 0, 0)

for (f in fullfnames) {

print(paste("Reading", f))

# head

h <- scan(f, quiet=TRUE, what=character(1), sep=sep, skip = skip, quote=quote, nlines=1)

names(h) <- gsub("\"","",h)

h <- lapply(h,as.null)

cols <- c(name.Gf, name.Gb, name.Rf, name.Rb, name.W, name.NAME, name.ID)

h[charmatch(cols,names(h))] <- character(1) #Ignores columns that are spelt incorrectly

# cut

dat <- scan(f, quiet = TRUE, what = h, sep = sep, skip = skip +

1, quote = quote, ...)

Gf <- cbind(Gf, as.numeric(dat[[name.Gf]]))

if (!is.null(name.Gb))

Gb <- cbind(Gb, as.numeric(dat[[name.Gb]]))

Rf <- cbind(Rf, as.numeric(dat[[name.Rf]]))

if (!is.null(name.Rb))

Rb <- cbind(Rb, as.numeric(dat[[name.Rb]]))

if (!is.null(name.W))

W <- cbind(W, as.numeric(dat[[name.W]]))

# head

if (!is.null(name.NAME))

Name <- cbind(Name, gsub("\"", "", dat[[name.NAME]]))

if (!is.null(name.ID))

ID <- cbind(ID, gsub("\"", "", dat[[name.ID]]))

# cut

}

# head

if(!is.null(name.NAME))# check that multiple cols for ID and Name are identical

{

Names <- apply(Name[,1]==Name,2,all)

if(any(Names==F))

{

print(paste("Warning: The ’Names’ column in the gpr file(s):", fnames[!Names], ",

differ from the first:", fnames[1], sep=" "))

}

}

if(!is.null(name.ID))

{

IDs <- apply(ID==ID[,1],2,all)

if(any(IDs==F))

{

warning(paste("The ’ID’ column in the gpr file(s):", fnames[!IDs],

", differ from the first:", fnames[1], sep=" "))

}

}

# cut

if (!is.null(name.W))

colnames(W) <- fnames

if (!is.null(name.Gb))

colnames(Gb) <- fnames

if (!is.null(name.Rb))

colnames(Rb) <- fnames

colnames(Gf) <- colnames(Rf) <- fnames
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if (is.null(notes))

notes <- ""

mraw <- new("marrayRaw", maRf = Rf, maRb = Rb, maGf = Gf,

maGb = Gb, maNotes = notes)

#head

if(!is.null(name.NAME))

{

Info <- new("marrayInfo", maLabels=Name[,1], maInfo= data.frame(cbind(ID=ID[,1],

Name=Name[,1])), maNotes = notes)

maGnames(mraw) <- Info

}

#cut

if (!is.null(layout))

maLayout(mraw) <- layout

if (!is.null(gnames))

maGnames(mraw) <- gnames

if (!is.null(targets))

maTargets(mraw) <- targets

if (!is.null(W))

maW(mraw) <- W

return(mraw)

}

A.3 Package marrayinput speed code chunk

This code modification is for the marrayRaw function in the bioconductor marrayInput

library. It obtains significant speed increases in uploading time. The following code only

scans in the columns of interest into memory ignoring columns which are not of interest.

h <- scan(f, quiet=TRUE, what=character(1), sep=sep, skip = skip, quote=quote, nlines=1)

names(h) <- gsub("\"","",h)

h <- lapply(h,as.null)

cols <- c(name.Gf, name.Gb, name.Rf, name.Rb, name.W, name.NAME, name.ID)

h[charmatch(cols,names(h))] <- character(1) #Ignores columns that are spelt incorrectly

A.4 Package qvalue π0 estimation R code

This R language code is from the qvalue bioconductor library. The function qvalue, is

an automated procedure to calculate an estimate of π0 from a list of p-values. The code

omits the use of observation weighting by (1−λ). Note that the estimate of π0 is slightly

biased, as it is estimated at π̂0(λ = 0.95),

qvalue <-

function (p, lambda = seq(0, 0.95, 0.05), pi0.meth = "smoother",

fdr.level = NULL, robust = FALSE){

...

if (pi0.meth == "smoother") {

spi0 <- smooth.spline(lambda, pi0, df = 3)

pi0 <- predict(spi0, x = max(lambda))$y

pi0 <- min(pi0, 1)

}
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...

}.

To reduce variance and eliminate bias by estimating π0 at π̂0(λ = 1), the following

changes to the qvalue function can be made,

qvalue <-

function (p, lambda = seq(0, 0.95, 0.05), pi0.meth = "smoother",

fdr.level = NULL, robust = FALSE){

...

if (pi0.meth == "smoother") {

spi0 <- smooth.spline(lambda, pi0, w = 1-lambda, df = 3)

pi0 <- predict(spi0, x = 1)$y

pi0 <- min(pi0, 1)

}

...

}.

A.5 Normal simulation R code

The function FDRnormalsim was written to generate observations from a mixture of

normal distributions to examine adaptive and non-adaptive FDR control [21, 29]

FDRnormalsim <- function(outfile = "tmp", m=1000, iiter=100, seqpi0=1, alpha = 0.05, adaptive=F,

mu0=0, mu1=3, sigma=1, seed=1, Olddir=F, Estpi0 = F)#, nreps=5, generator="GG")

{

############################################

# Number of genes to simulate

# m <- 1000

# Number of iterations

# iiter <- 1

# seqpi0 is the pi[0] values to test at

# seq(0.05,1, length=ceiling(1001*0.95))

# alpha typeI probability test cutoff

# alpha = 0.05

# Finner adaptive FDR control

# adaptive <- F

############################################

library(multtest)

set.seed(seed)

starttime <- proc.time()[3]

# Set output Data directory (removing /Code directory if R is RUN in it)

if(Olddir){

datadir <- gsub("/Code","/Data/Old", getwd())

}else{

datadir <- gsub("/Code","/Data",getwd())

}

# False discovery threshold

alphastar <- alpha

#pcols <- m # Number of observations

FD <- rep(NA, iiter)

FND <- rep(NA, iiter)

FDlist <- list(m=m, alpha=alpha, parameters=list(mu0=mu0,mu1=mu1), V=list(), T=list(), p0=list(),p0NW=list())

lambdaseq <- seq(0,(m-1)/m, length=100)
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for(pi0 in seqpi0)

{

if(adaptive && !Estpi0)

{

alphastar<- alpha/pi0

}

m1 <- round(m * (1-pi0))

m0 <- m - m1

DEmeans <- c(rep(mu1,m1), rep(mu0,m0))

DEflag <- as.logical(DEmeans)

for(i in seq(iiter)){

X <- rnorm(m, DEmeans, sigma)

pvalues <- 2*(1-pnorm(abs(X),0,1))

if(Estpi0){

# pi0 estimation

# Storey uses seq(0,0.95, by=0.05) for lambda, estimates at pi(0.95)

# Maximum value of lambda needs to be less than 1 estimated by (m-1)/m

pi0lambda <- tapply(lambdaseq, lambdaseq, function(x){sum(pvalues>x)/(m*(1-x))})

# a) weighting by 1-lambda

pi0hat <- min(smooth.spline(lambdaseq, pi0lambda, w=1-lambdaseq, df=3)$y[length(lambdaseq)],1)

FDlist[["p0"]][[deparse(pi0)]][i] <- round(pi0hat,8) #(pi0hat,8)

# B) no 1-lambda weighting

pi0hat <- min(smooth.spline(lambdaseq, pi0lambda, df=3)$y[length(lambdaseq)],1)

FDlist[["p0NW"]][[deparse(pi0)]][i] <- round(pi0hat,8)

if(adaptive){

alphastar <- alpha/pi0hat

}

}

# STEP DOWN

Porder <- order(pvalues)

cutoff <- pvalues[Porder] > (seq(m) * alphastar)/m # Sorted pvalues

DEorder <- DEflag[Porder] #Reordered DEflag

rejected <- DEorder[!cutoff]

accepted <- DEorder[cutoff]

FD[i] <- sum(!rejected)

FND[i] <- sum(accepted)

} # i in seq(iiter)

# Writing to FDlist every iteration of p

FDlist[["V"]][[deparse(pi0)]] <- FD

FDlist[["T"]][[deparse(pi0)]] <- FND

dput(FDlist, paste(datadir, outfile, sep="/"))

} # pi0 in seqpi0

endtime <- proc.time()[3] - starttime

return(endtime)

}

A.6 Multtest and EBarrays simulation R code

The functions EBarrays and Multtest were written to simulate microarray datasets un-

der 3 scenarios, GG-B, LNN-B, and GU-B. Adaptive FDR control [21, 29] in statistical

analysis is used to calculate summary statistics.

EBarrays <- function(outfile = "EB.GGtmp", m=1000, iiter=10,

seqpi0= 1, alpha = 0.05, adaptive=T, nreps=5, generator="GG"){

############################################
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# Number of genes to simulate

# m <- 1000

# Number of iterations

# iiter <- 1

# Flag to cleanup the .RData temporary files

# debug <- F

# seqpi0 is the pi[0] values to test at

# seq(0.05,1, length=ceiling(1001*0.95))

# alpha typeI probability test cutoff

# alpha = 0.05

# Finner adaptive FDR control

# adaptive <- F

# Number of reps

# nreps <- 5

############################################

set.seed(1)

starttime <- proc.time()[3]

# Set output Data directory (removing /Code directory if R is RUN in it)

if(.Platform$OS.type=="windows"){

datadir <- "C://Documents and Settings//Administrator//My Documents//Masters Thesis//FDRpaper//Data//"

}else{

datadir <- gsub("/Code","", paste(getwd(),"/Data/", sep=""))

#datadir <- "/home/hramwd/MICROARRAY/Analysis/Simulation/Data/"

}

# False discovery threshold

alphastar <- alpha

n1 <- n2 <- nreps

pcols <- 2*nreps

FD <- rep(NA, iiter)

FND <- rep(NA, iiter)

pprior <- 2

maxiter <- 5

model <- "IPTG-a"

parameters <- list(HS = list(

GG = c(2.74886, 1.36546, 4.12844),

LNN = c(2.32501, sqrt(0.38106), sqrt(1.11561))

),

"IPTG-a" = list(

GG = c(12.534793153, 0.816305808, 0.370668871),

LNN = c( 2.36878, sqrt(0.04726), sqrt(1.72682))

)

)

nploglikrep <- function(theta, sumx, sumlogx, n1, sumy, sumlogy, n2, z, m)

{

a <- theta[1]

a0 <- theta[2]

eta <- theta[3]

sumz <- sum(z)

# xx,yy are intensities in the two channels; zz=P(b!=c|xx,yy)

# theta=(a,a0,eta)

# (I’ll separately optimize pp=P(zz=1); hence npl.. for partial loglik

ll <- m*(-n1*lgamma(a) - n2*lgamma(a)) + (a-1)*sum((sumlogx + sumlogy)) + (lgamma(n1*a + a0) + lgamma(n2*a + a0))*sumz - (n1*a + a0)*sum(z*log(eta+sumx)) -

(n2*a + a0)*sum(z*log(eta+sumy)) +

(m + sumz)*(a0*log(eta) - lgamma(a0)) +

(m - sumz)*lgamma(n1*a + n2*a + a0) - (n1*a + n2*a + a0)*sum((1 - z)*log(eta + (sumx + sumy)))

return(-ll)

}

#sumlog <- function(x){sum(log(x))}
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# Gamma parameters and EM initial values

if(generator=="GG"){

a.shape <- parameters[[model]][[generator]][1]#12.534793153

a0.shape <- parameters[[model]][[generator]][2]# 0.816305808

scale <- parameters[[model]][[generator]][3]# 0.370668871

FDlist <- list(m=m, alpha=alpha,

GG = c(alpha=a.shape, alpha0=a0.shape, neta=scale),

V=list(),

T=list(),

p0=list()

)

init.theta <- c(a.shape, a0.shape, scale)

}

if(generator=="LNN") # LNN parameters

{

mu <- parameters[[model]][[generator]][1]#2.36839

sigma <- parameters[[model]][[generator]][2]# sqrt(0.04730)

tau <- parameters[[model]][[generator]][3]#1.72850

FDlist <- list(m=m, alpha=alpha,

LNN = c(mu=mu, sigma=sigma, tau=tau),

V=list(),

T=list(),

p0=list())

init.theta <- c(mu, sigma, tau)

}

if(generator=="GU")

{

a.shape <- parameters[[model]][["GG"]][1] # 12.534793153

Mrange <- c(-2.5,2.5)

Arange <- c(-8,3)

FDlist <- list(m=m, alpha=alpha,

GU = c(alpha=a.shape),

V=list(),

T=list(),

p0=list())

init.theta <- c(a.shape, 0.816305808, 0.370668871)

}

theta <- c(init.theta, NA)

for(pi0 in seqpi0)

{

theta[4]<- (1-pi0)

if(pi0==0) # In Expect of EM log(0) = Inf

{

pi0 <- 0.0000001

}

if(pi0==1) # In Expect of EM log(1-1) = Inf

{

pi0 <- 0.9999999

}

if(!adaptive)

{

alphastar<- alpha*pi0

}

m1 <- round(m * (1-pi0)) # Opposite from ttest model

m0 <- m - m1

DEflag <- c(rep(1,m1), rep(0,m0))

# 2) Setting up the dataset (On raw scale)
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for(i in seq(iiter)){

if(generator=="GG"){

DEscales <- rgamma(2*m1, shape=a0.shape, rate=scale)

EEscales <- rgamma(m0 , shape=a0.shape, rate=scale)

scales <- c(rep(DEscales, each=nreps), rep(EEscales, each=2*nreps))

X <- rgamma(m*pcols, a.shape, rate=scales)

dim(X) <- c(pcols, m)

X <- t(X)

}

if(generator=="LNN"){

DEmeans <- rnorm(2*m1, mu, tau)

EEmeans <- rnorm(m0 , mu, tau)

means <- c(rep(DEmeans, each=nreps),rep(EEmeans, each=2*nreps))

X <- exp(rnorm(m*pcols, means, sigma))

dim(X) <- c(pcols, m)

X <- t(X)

}

if(generator=="GU"){

Mmeans <- c(runif(m1, Mrange[1], Mrange[2]), rep(0,m0))

Ameans <- runif(m, Arange[1], Arange[2])

Ymeans <- (2^(Ameans + Mmeans/2))

Xmeans <- (2^(Ameans - Mmeans/2))

means <- rep(c(t(cbind(Xmeans, Ymeans))), each=nreps)

X <- rgamma(m*pcols, 12.53, rate = means)

dim(X) <- c(pcols, m)

X <- t(X)

}

# 3) Parameters for DE (mu1, mu2) and EE (mu)

##################################################################

############################ EM Bayes ############################

##################################################################

# Objects needed for em (m is # genes)

x <- X[,1:nreps]

y <- X[,(nreps+1):pcols]

# rowSums much faster than apply

sumx <- rowSums(x)

sumy <- rowSums(y)

logx <- log(x)

logy <- log(y)

sumlogx <- rowSums(logx)

sumlogy <- rowSums(logy)

iter <- 1

notdone <- T

while( notdone )

{

a <- theta[1]

a0 <- theta[2]

eta <- theta[3]

p <- theta[4]

# E-step

tmp <- log(p) - log(1-p) +

a0*log(eta) + lgamma(n1*a + a0) + lgamma(n2*a + a0) - lgamma(a0) -

(n1*a + a0)*log(eta + sumx) - (n2*a + a0)*log(eta + sumy) +

(n1*a + n2*a + a0)*log(eta+(sumx+sumy)) -

lgamma(n1*a + n2*a + a0)

z <- 1/( 1 + exp(-tmp) )

if(any(is.nan(z))){

print(paste("NaNs found at, pi[0] = ",pi0, sep=""))
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dput(Error.seed, .Random.seed)

}

# M-step

fit <- optim(par=theta[1:3], fn=nploglikrep, method="L-BFGS-B",

lower=c(1,0.001,0.001), sumx=sumx, sumlogx=sumlogx, n1=n1,

sumy=sumy,sumlogy=sumlogy, n2=n2, z=z, m=m)

theta <- c( fit$par[1:3], ( pprior + sum( z ) )/(2*pprior+m ) )

# print(c(iter, round(theta,4)))

notdone <- (iter<maxiter)

iter <- iter + 1

}

##################################################################

############################ FDR calc ############################

##################################################################

P0 <- 1-z

P0order <- order(P0)

P0sort <- P0[P0order]

EP0 <- cumsum(P0sort)

cutoff <- (EP0/seq(EP0))<alphastar

######### J(R) calculation ########

# P0sort <- P0[P0order]

# JR <- rep(NA, m)

# for(ind in seq(m)){

# theoretically sum should be in here too

# JR[ind] <- sum(P0sort<=P0sort[ind])

# }

# EP0 <- cumsum(P0sort)

# cutoff <- (EP0/JR)<alphastar

######### J(R) calculation ########

DEorder <- DEflag[P0order] #Reordered DEflag

rejected <- DEorder[cutoff]

accepted <- DEorder[!cutoff]

FD[i] <- sum(!rejected)

FND[i] <- sum(accepted)

FDlist[["p0"]][[deparse(pi0)]][i] <- round(1-theta[4],8)

} # i in seq(iiter)

FDlist[["V"]][[deparse(pi0)]] <- FD

FDlist[["T"]][[deparse(pi0)]] <- FND

dput(FDlist, paste(datadir, outfile ,sep=""))

} # p in seqp

endtime <- proc.time()[3] - starttime

return(endtime)

}

Multtest <- function(outfile = "tmp", m=1000, iiter=10, seqpi0= 0.9,

alpha = 0.05, adaptive=F, nreps=5, generator="GG",estpi0=F, seed=1)

{

############################################

# Number of genes to simulate

# m <- 1000

# Number of iterations

# iiter <- 1

# Flag to cleanup the .RData temporary files

# debug <- F

# seqpi0 is the pi[0] values to test at

# seq(0.05,1, length=ceiling(1001*0.95))

# alpha typeI probability test cutoff

# alpha = 0.05
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# Finner adaptive FDR control

# adaptive <- F

# Number of reps

# nreps <- 5

############################################

library(multtest)

set.seed(seed)

starttime <- proc.time()[3]

# Set output Data directory (removing /Code directory if R is RUN in it)

#datadir <- "/home/hramwd/MICROARRAY/Analysis/Simulation/Data/"

datadir <- gsub("/Code","", paste(getwd(),"/Data/", sep=""))

# False discovery threshold

alphastar <- alpha

pcols <- 2*nreps

FD <- rep(NA, iiter)

FND <- rep(NA, iiter)

# repfile

replicates <- rep(0:1, rep(nreps,2))

# Model parameters

model <- "IPTG-a"

parameters <- list(HS = list(

GG = c(2.74886, 1.36546, 4.12844),

LNN = c(2.32501, sqrt(0.38106), sqrt(1.11561))

),

"IPTG-a" = list(

GG = c(12.534793153, 0.816305808, 0.370668871),

LNN = c( 2.36878, sqrt(0.04726), sqrt(1.72682))

)

)

# HEAT SHOCK

# GG Model params.theta.ests

#[1] 2.74886 1.36546 4.12844

# LNN Model params.theta.ests

#[1] 2.32501 0.38106 1.11561

# IPTG-a

# GG Model params.theta.ests

#[1] 12.50769 0.81749 0.37262

# LNN Model params.theta.ests

#[1] 2.36878 0.04726 1.72682

if(generator=="GG")

{

# Gamma parameters

a.shape <- parameters[[model]][[generator]][1]

a0.shape <- parameters[[model]][[generator]][2]

scale <- parameters[[model]][[generator]][3]

FDlist <- list(m=m, alpha=alpha,

GG = c(alpha=a.shape, alpha0=a0.shape, neta=scale),

V=list(), T=list(), p0=list())

}

if(generator=="LNN")

{

# LNN parameters IPTG-a HeatShock

mu <- parameters[[model]][[generator]][1]

sigma <- parameters[[model]][[generator]][2]

tau <- parameters[[model]][[generator]][3]

FDlist <- list(m=m, alpha=alpha,

LNN = c(mu=mu, sigma=sigma, tau=tau),

V=list(), T=list(), p0=list())
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}

if(generator=="GU")

{

a.shape <- parameters[[model]][["GG"]][1]

Mrange <- c(-2.5,2.5)

Arange <- c(-8,3)

FDlist <- list(m=m, alpha=alpha,

GU = c(alpha=a.shape),

V=list(), T=list(), p0=list())

}

lambdaseq <- seq(0,(m-1)/m, length=100)

for(pi0 in seqpi0)

{

if(pi0==0)

{

pi0 <- 0.0000001

}

if(pi0==1)

{

pi0 <- 0.9999999

}

if(adaptive && !estpi0)

{

alphastar<- alpha/pi0

}

m1 <- round(m * (1-pi0))

m0 <- m - m1

DEflag <- c(rep(1,m1), rep(0,m0))

# p.init <- c(p,1-p)

for(i in seq(iiter)){

if(generator=="GG")

{

DEscales <- rgamma(2*m1, shape=a0.shape, rate=scale)

EEscales <- rgamma(m0 , shape=a0.shape, rate=scale)

scales <- c(rep(DEscales, each=nreps), rep(EEscales, each=2*nreps))

X <- log2(rgamma(m*pcols, a.shape, rate=scales))

dim(X) <- c(pcols, m)

X <- t(X)

}

if(generator=="LNN")

{

DEmeans <- rnorm(2*m1, mu, tau)

EEmeans <- rnorm(m0 , mu, tau)

means <- c(rep(DEmeans, each=nreps),rep(EEmeans, each=2*nreps))

X <-rnorm(m*pcols, means, sigma) # Data already on log2 scale

dim(X) <- c(pcols, m)

X <- t(X)

}

if(generator=="GU")

{

Mmeans <- c(runif(m1, Mrange[1], Mrange[2]), rep(0,m0))

Ameans <- runif(m, Arange[1], Arange[2])

Ymeans <- (2^(Ameans + Mmeans/2))

Xmeans <- (2^(Ameans - Mmeans/2))

means <- rep(c(t(cbind(Xmeans, Ymeans))), each=nreps)

X <- rgamma(m*pcols, 12.53, rate = means)

dim(X) <- c(pcols, m)

X <- t(X)
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}

############## t tests ##############

tscores <- mt.teststat(X, classlabel=replicates, test="t.equalvar")

dfs <- pcols - 2

pvalues <- 2*(1-pt(abs(tscores), df=dfs))

# Storey uses seq(0,0.95, by=0.05) for lambda, estimates at pi(0.95)

# Maximum value of lambda needs to be less than 1 estimated by (m-1)/m

pi0lambda <- tapply(lambdaseq, lambdaseq, function(x){sum(pvalues>x)/(m*(1-x))})

pi0hat <- min(smooth.spline(lambdaseq, pi0lambda, w=1-lambdaseq, df=3)$y[length(lambdaseq)],1)

# Must turn alphastar back into alpha before calculating estimate

if(estpi0 && adaptive){

alphastar <- alpha/pi0hat

}

# STEP DOWN

Porder <- order(pvalues)

cutoff <- pvalues[Porder] > (seq(m) * alphastar)/m

DEorder <- DEflag[Porder] #Reordered DEflag

rejected <- DEorder[!cutoff]

accepted <- DEorder[cutoff]

FD[i] <- sum(!rejected)

FND[i] <- sum(accepted)

#print(paste("Not Rejected=",sum(!rejected), "Accepted=",sum(accepted)))

FDlist[["p0"]][[deparse(pi0)]][i] <- round(pi0hat,8)

} # i in seq(iiter)

# Writing to FDlist every iteration of p

FDlist[["V"]][[deparse(pi0)]] <- FD

FDlist[["T"]][[deparse(pi0)]] <- FND

dput(FDlist, paste(datadir, outfile, sep=""))

} # pi0 in seqpi0

endtime <- proc.time()[3] - starttime

return(endtime)

}
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