Difference between revisions of "AffyVsInHouse.R"
(Added summary stats etc) |
({{R}}) |
||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
+ | # {{R}} | ||
library(limma) | library(limma) | ||
library(affy) | library(affy) | ||
Line 9: | Line 10: | ||
# -------------------------------- Affymetrix --------------------------------- # | # -------------------------------- Affymetrix --------------------------------- # | ||
− | if( | + | if(1) { # Change for HortResearch |
dataDir <- "/Volumes/HD2/Max Planck/Data/Affy/DayNight/Celfiles" | dataDir <- "/Volumes/HD2/Max Planck/Data/Affy/DayNight/Celfiles" | ||
} else { | } else { | ||
Line 31: | Line 32: | ||
library(limma) | library(limma) | ||
− | if( | + | if(1) { # Change for HortResearch |
− | + | dataDir <- "/Volumes/HD2/Max\ Planck/HortResearch/VariabilityStudy/Data" | |
}else { | }else { | ||
dataDir <- "/Users/admin/Desktop/Directories/VariabilityStudy/Data" | dataDir <- "/Users/admin/Desktop/Directories/VariabilityStudy/Data" | ||
Line 44: | Line 45: | ||
pairs(log2(RG$R), pch=".") | pairs(log2(RG$R), pch=".") | ||
pairs(log2(RG$G), pch=".") | pairs(log2(RG$G), pch=".") | ||
− | + | dev.off() | |
RG <- RG[,c("AC3","AC4")] | RG <- RG[,c("AC3","AC4")] | ||
Line 56: | Line 57: | ||
# Normalization (loess, printtiploess) | # Normalization (loess, printtiploess) | ||
MA <- normalizeWithinArrays(RG, method="loess", bc.method="none") | MA <- normalizeWithinArrays(RG, method="loess", bc.method="none") | ||
+ | MA <- normalizeBetweenArrays(MA, method="scale") | ||
RG.norm <- RG.MA(MA) | RG.norm <- RG.MA(MA) | ||
Line 65: | Line 67: | ||
# Use median and mad for skewed chisq distributions | # Use median and mad for skewed chisq distributions | ||
− | + | calcStats <- function(x, type="median", format = "%2.3f", addText = TRUE) { | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | calcStats <- function(x, type="median", format = "% | ||
xStat <- c() | xStat <- c() | ||
if(type=="median") { | if(type=="median") { | ||
medx <- sprintf(format, median(x)) | medx <- sprintf(format, median(x)) | ||
− | xStat <- paste(expression(median(x)), "=", medx, sep=" ") | + | if(addText){ |
+ | xStat <- paste(expression(median(x)), "=", medx, sep=" ") | ||
+ | } else { | ||
+ | xStat <- medx | ||
+ | } | ||
} else { | } else { | ||
madx <- sprintf(format, mad(x)) | madx <- sprintf(format, mad(x)) | ||
− | xStat <- paste(expression(mad(x)), "=", madx, sep=" ") | + | if(addText){ |
+ | xStat <- paste(expression(mad(x)), "=", madx, sep=" ") | ||
+ | } else { | ||
+ | xStat <- madx | ||
+ | } | ||
} | } | ||
return(xStat) | return(xStat) | ||
Line 100: | Line 102: | ||
X11(xpos=0, ypos=0, width=size, height=size) | X11(xpos=0, ypos=0, width=size, height=size) | ||
X11(xpos=600, ypos=0, width=size, height=size) | X11(xpos=600, ypos=0, width=size, height=size) | ||
+ | X11(xpos=0, ypos=600+45, width=size/2, height=size/2) | ||
+ | |||
dev.list() | dev.list() | ||
Line 116: | Line 120: | ||
Rmean <- apply(log2(RG.norm$R), 1, mean) | Rmean <- apply(log2(RG.norm$R), 1, mean) | ||
Gmean <- apply(log2(RG.norm$G), 1, mean) | Gmean <- apply(log2(RG.norm$G), 1, mean) | ||
+ | |||
+ | RG1mean <- apply(log2(cbind(RG.norm$R[,1], RG.norm$G[,2])),1, mean) | ||
+ | RG2mean <- apply(log2(cbind(RG.norm$R[,2], RG.norm$G[,1])),1, mean) | ||
dev.set(2) | dev.set(2) | ||
Line 124: | Line 131: | ||
dev.set(3) | dev.set(3) | ||
hist(Rmean, main=InHouseMain, xlim=c(4,16), xlab="Cy5 Average signal") | hist(Rmean, main=InHouseMain, xlim=c(4,16), xlab="Cy5 Average signal") | ||
− | text(x=8, y=1700, label=calcStats(Rmean, type="median", format="%2.1f"), adj=c(1,0)) | + | text(x=8, y=1700, label=calcStats(Rmean, type="median", |
− | text(x=8, y=1550, label=calcStats(Rmean, type="mad", format="%2.1f"), | + | format="%2.1f"), adj=c(1,0)) |
+ | text(x=8, y=1550, label=calcStats(Rmean, type="mad", format="%2.1f"), | ||
+ | adj=c(1,0)) | ||
Sys.sleep(1) | Sys.sleep(1) | ||
hist(Gmean, main=InHouseMain, xlim=c(4,16), xlab="Cy3 Average signal") | hist(Gmean, main=InHouseMain, xlim=c(4,16), xlab="Cy3 Average signal") | ||
− | text(x=8, y=1700, label=calcStats(Gmean, type="median", format="%2.1f"), adj=c(1,0)) | + | text(x=8, y=1700, label=calcStats(Gmean, type="median", |
− | text(x=8, y=1550, label=calcStats(Gmean, type="mad", format="%2.1f"), adj=c(1,0)) | + | format="%2.1f"), adj=c(1,0)) |
+ | text(x=8, y=1550, label=calcStats(Gmean, type="mad", format="%2.1f"), | ||
+ | adj=c(1,0)) | ||
+ | |||
+ | dev.set(4) | ||
+ | # Dye pair not much different in mean signal | ||
+ | hist(RG1mean, main=InHouseMain, xlim=c(4,16), xlab="Cy3/Cy5 Average signal") | ||
+ | text(x=11, y=1700, label=calcStats(RG1mean, type="median"), adj=c(1,0)) | ||
+ | text(x=11, y=1550, label=calcStats(RG1mean, type="mad"), adj=c(1,0)) | ||
+ | |||
+ | hist(RG2mean, main=InHouseMain, xlim=c(4,16), xlab="Cy3/Cy5 Average signal") | ||
+ | text(x=11, y=1700, label=calcStats(RG2mean, type="median"), adj=c(1,0)) | ||
+ | text(x=11, y=1550, label=calcStats(RG2mean, type="mad"), adj=c(1,0)) | ||
# SD distributions | # SD distributions | ||
Line 136: | Line 157: | ||
Rsd <- apply(log2(RG.norm$R), 1, sd) | Rsd <- apply(log2(RG.norm$R), 1, sd) | ||
Gsd <- apply(log2(RG.norm$G), 1, sd) | Gsd <- apply(log2(RG.norm$G), 1, sd) | ||
+ | |||
+ | RG1sd <- apply(log2(cbind(RG.norm$R[,1], RG.norm$G[,2])), 1, sd) | ||
+ | RG2sd <- apply(log2(cbind(RG.norm$R[,2], RG.norm$G[,1])), 1, sd) | ||
+ | |||
dev.set(2) | dev.set(2) | ||
Line 150: | Line 175: | ||
text(x=1, y=3000, label=calcStats(Gsd, type="median"), adj=c(1,0)) | text(x=1, y=3000, label=calcStats(Gsd, type="median"), adj=c(1,0)) | ||
text(x=1, y=2700, label=calcStats(Gsd, type="mad"), adj=c(1,0)) | text(x=1, y=2700, label=calcStats(Gsd, type="mad"), adj=c(1,0)) | ||
+ | |||
+ | dev.set(4) | ||
+ | # Dye pair seems to add about another 10% noise (0.107/0.113, 0.107/0.114) | ||
+ | hist(RG1sd, main=InHouseMain, breaks = 100, xlim=c(0,1.5), xlab="Cy3/Cy5 interspot standard deviation") | ||
+ | text(x=1, y=3000, label=calcStats(RG1sd, type="median"), adj=c(1,0)) | ||
+ | text(x=1, y=2700, label=calcStats(RG1sd, type="mad"), adj=c(1,0)) | ||
+ | |||
+ | hist(RG2sd, main=InHouseMain, breaks = 100, xlim=c(0,1.5), xlab="Cy3/Cy5 interspot standard deviation") | ||
+ | text(x=1, y=3000, label=calcStats(RG2sd, type="median"), adj=c(1,0)) | ||
+ | text(x=1, y=2700, label=calcStats(RG2sd, type="mad"), adj=c(1,0)) | ||
# CV | # CV | ||
dev.set(2) | dev.set(2) | ||
− | hist(esd/emean, main=AffyMain, breaks = 12, xlim=c(0,0.2), xlab="Coefficient of variation") | + | hist(esd/emean, main=AffyMain, breaks = 12, xlim=c(0,0.2), |
+ | xlab="Coefficient of variation") | ||
text(x=0.15, y=6000, label=calcStats(esd/emean, type="median"), adj=c(1,0)) | text(x=0.15, y=6000, label=calcStats(esd/emean, type="median"), adj=c(1,0)) | ||
text(x=0.15, y=5500, label=calcStats(esd/emean, type="mad"), adj=c(1,0)) | text(x=0.15, y=5500, label=calcStats(esd/emean, type="mad"), adj=c(1,0)) | ||
Line 166: | Line 202: | ||
text(x=0.15, y=2700, label=calcStats(Gsd/Gmean, type="mad"), adj=c(1,0)) | text(x=0.15, y=2700, label=calcStats(Gsd/Gmean, type="mad"), adj=c(1,0)) | ||
− | # ---------------------- | + | dev.set(4) |
− | + | # Checking a Dye swap, also about a 10% error added dye to dye swap (0.009/0.01) | |
− | + | hist(RG1sd/RG1mean, main=InHouseMain, breaks=80, xlim=c(0,0.2), xlab="Cy3/Cy5 interspot coefficient of variation") | |
− | + | text(x=0.15, y=3000, label=calcStats(RG1sd/RG1mean, type="median"), adj=c(1,0)) | |
− | + | text(x=0.15, y=2700, label=calcStats(RG1sd/RG1mean, type="mad"), adj=c(1,0)) | |
− | + | ||
− | mad( | + | hist(RG2sd/RG2mean, main=InHouseMain, breaks=80, xlim=c(0,0.2), xlab="Cy3/Cy5 interspot coefficient of variation") |
+ | text(x=0.15, y=3000, label=calcStats(RG2sd/RG1mean, type="median"), adj=c(1,0)) | ||
+ | text(x=0.15, y=2600, label=calcStats(RG2sd/RG1mean, type="mad"), adj=c(1,0)) | ||
+ | |||
+ | |||
+ | # ------------------------- Summary diagnostics ------------------------------- # | ||
+ | # Means | ||
+ | signal <- | ||
+ | c( | ||
+ | calcStats(emean, type="median", addText=FALSE), | ||
+ | calcStats(Rmean, type="median", addText=FALSE), | ||
+ | calcStats(Gmean, type="median", addText=FALSE), | ||
+ | calcStats(RG1mean, type="median", addText=FALSE), | ||
+ | calcStats(RG2mean, type="median", addText=FALSE), | ||
+ | ) | ||
+ | noise <- | ||
+ | c( | ||
+ | calcStats(emean, type="mad", addText=FALSE), | ||
+ | calcStats(Rmean, type="mad", addText=FALSE), | ||
+ | calcStats(Gmean, type="mad", addText=FALSE), | ||
+ | calcStats(RG1mean, type="mad", addText=FALSE), | ||
+ | calcStats(RG2mean, type="mad", addText=FALSE) | ||
+ | ) | ||
+ | |||
+ | xmean <- cbind(signal, noise) | ||
+ | rownames(xmean) <- c("Affy", "Cy5", "Cy3","Cy3/Cy5 1", "Cy3/Cy5 2") | ||
+ | |||
+ | #SD's | ||
+ | signal <- | ||
+ | c( | ||
+ | calcStats(esd, type="median", addText=FALSE), | ||
+ | calcStats(Rsd, type="median", addText=FALSE), | ||
+ | calcStats(Gsd, type="median", addText=FALSE), | ||
+ | calcStats(RG1sd, type="median", addText=FALSE), | ||
+ | calcStats(RG2sd, type="median", addText=FALSE), | ||
+ | ) | ||
+ | noise <- | ||
+ | c( | ||
+ | calcStats(esd, type="mad", addText=FALSE), | ||
+ | calcStats(Rsd, type="mad", addText=FALSE), | ||
+ | calcStats(Gsd, type="mad", addText=FALSE), | ||
+ | calcStats(RG1sd, type="mad", addText=FALSE), | ||
+ | calcStats(RG2sd, type="mad", addText=FALSE) | ||
+ | ) | ||
+ | |||
+ | xsd <- cbind(signal, noise) | ||
+ | rownames(xsd) <- c("Affy", "Cy5", "Cy3","Cy3/Cy5 1", "Cy3/Cy5 2") | ||
+ | |||
+ | # CV's | ||
+ | signal <- | ||
+ | c( | ||
+ | calcStats(esd/emean, type="median", addText=FALSE), | ||
+ | calcStats(Rsd/Rmean, type="median", addText=FALSE), | ||
+ | calcStats(Gsd/Gmean, type="median", addText=FALSE), | ||
+ | calcStats(RG1sd/RG1mean, type="median", addText=FALSE), | ||
+ | calcStats(RG2sd/RG2mean, type="median", addText=FALSE), | ||
+ | ) | ||
+ | noise <- | ||
+ | c( | ||
+ | calcStats(esd/emean, type="mad", addText=FALSE), | ||
+ | calcStats(Rsd/Rmean, type="mad", addText=FALSE), | ||
+ | calcStats(Gsd/Gmean, type="mad", addText=FALSE), | ||
+ | calcStats(RG1sd/RG1mean, type="mad", addText=FALSE), | ||
+ | calcStats(RG2sd/RG2mean, type="mad", addText=FALSE) | ||
+ | ) | ||
− | + | xcv <- cbind(signal, noise) | |
+ | rownames(xcv) <- c("Affy", "Cy5", "Cy3","Cy3/Cy5 1", "Cy3/Cy5 2") | ||
− | + | print(xmean) | |
− | + | print(xsd) | |
+ | print(xcv) |
Latest revision as of 02:16, 29 May 2007
Code snipits and programs written in R, S or S-PLUS library(limma) library(affy)
packageDescription("limma", field="Version") packageDescription("affy", field="Version")
vignette("affy")
- -------------------------------- Affymetrix --------------------------------- #
if(1) { # Change for HortResearch
dataDir <- "/Volumes/HD2/Max Planck/Data/Affy/DayNight/Celfiles"
} else {
dataDir <- "/Users/admin/Desktop/DayNight/Celfiles/" Sys.putenv("DISPLAY"=":0")
}
dset<- ReadAffy(filenames=file.path(dataDir, dir(dataDir, pattern=".CEL")), widget = F) # loads CEL files into an affybatch object
un <- ".CEL" # remove extra names sampleNames(dset) <- gsub(un, "", sampleNames(dset))
- Obtaining indexes of sampleNames (affy slides) of interest
technicalreps <- grep("00 G048", sampleNames(dset)) techset <- dset[,technicalreps]
- Normalization
erma <- rma(techset)
- --------------------------------- In house ---------------------------------- #
library(limma)
if(1) { # Change for HortResearch
dataDir <- "/Volumes/HD2/Max\ Planck/HortResearch/VariabilityStudy/Data"
}else {
dataDir <- "/Users/admin/Desktop/Directories/VariabilityStudy/Data"
} files <- dir(dataDir, pattern="gpr")
- Examine genepix, genepix.median
RG <- read.maimages(files, path=dataDir, source="genepix", wt.fun=wtflags(0))
- Visually AC3 and AC4 most similar
pairs(log2(RG$R), pch=".") pairs(log2(RG$G), pch=".") dev.off() RG <- RG[,c("AC3","AC4")]
- All spots
nrow(RG)
- Good spots
apply(RG$weights, 2, sum)
- Bad spots
nrow(RG) - apply(RG$weights, 2, sum)
- Normalization (loess, printtiploess)
MA <- normalizeWithinArrays(RG, method="loess", bc.method="none") MA <- normalizeBetweenArrays(MA, method="scale") RG.norm <- RG.MA(MA)
- summary stats
iqr <- function(x, qlims=c(0.25, 0.75)) {
IQR <- quantile(x, qlims[2]) - quantile(x, qlims[1]) return(IQR)
}
- Use median and mad for skewed chisq distributions
calcStats <- function(x, type="median", format = "%2.3f", addText = TRUE) {
xStat <- c() if(type=="median") { medx <- sprintf(format, median(x)) if(addText){ xStat <- paste(expression(median(x)), "=", medx, sep=" ") } else { xStat <- medx } } else { madx <- sprintf(format, mad(x)) if(addText){ xStat <- paste(expression(mad(x)), "=", madx, sep=" ") } else { xStat <- madx } } return(xStat)
}
- Test
calcStats(1:10, type="median") median(1:10) calcStats(1:10, type="mad") mad(1:10)
- --------------------------- Comparison plots -------------------------------- #
- Setup
size <- 8 AffyMain <- "Affymetrix technical replication" InHouseMain <- "In house technical replication"
graphics.off() X11(xpos=0, ypos=0, width=size, height=size) X11(xpos=600, ypos=0, width=size, height=size) X11(xpos=0, ypos=600+45, width=size/2, height=size/2)
dev.list()
- Pairs plots
pairs(log2(RG.norm$R), pch=".") pairs(log2(RG.norm$G), pch=".")
dev.set(2) plot(exprs(erma), main = AffyMain, pch=".") dev.set(3) plot(log2(RG.norm$R), main = InHouseMain, pch=".")
- Histograms
- Mean distributions
emean <- apply(exprs(erma), 1, mean) Rmean <- apply(log2(RG.norm$R), 1, mean) Gmean <- apply(log2(RG.norm$G), 1, mean)
RG1mean <- apply(log2(cbind(RG.norm$R[,1], RG.norm$G[,2])),1, mean) RG2mean <- apply(log2(cbind(RG.norm$R[,2], RG.norm$G[,1])),1, mean)
dev.set(2) hist(emean, main=AffyMain, xlim=c(4,16), xlab="Average signal") text(x=15, y=1700, label=calcStats(emean, type="median"), adj=c(1,0)) text(x=15, y=1550, label=calcStats(emean, type="mad"), adj=c(1,0))
dev.set(3) hist(Rmean, main=InHouseMain, xlim=c(4,16), xlab="Cy5 Average signal") text(x=8, y=1700, label=calcStats(Rmean, type="median", format="%2.1f"), adj=c(1,0)) text(x=8, y=1550, label=calcStats(Rmean, type="mad", format="%2.1f"), adj=c(1,0))
Sys.sleep(1) hist(Gmean, main=InHouseMain, xlim=c(4,16), xlab="Cy3 Average signal") text(x=8, y=1700, label=calcStats(Gmean, type="median", format="%2.1f"), adj=c(1,0)) text(x=8, y=1550, label=calcStats(Gmean, type="mad", format="%2.1f"), adj=c(1,0))
dev.set(4)
- Dye pair not much different in mean signal
hist(RG1mean, main=InHouseMain, xlim=c(4,16), xlab="Cy3/Cy5 Average signal") text(x=11, y=1700, label=calcStats(RG1mean, type="median"), adj=c(1,0)) text(x=11, y=1550, label=calcStats(RG1mean, type="mad"), adj=c(1,0))
hist(RG2mean, main=InHouseMain, xlim=c(4,16), xlab="Cy3/Cy5 Average signal") text(x=11, y=1700, label=calcStats(RG2mean, type="median"), adj=c(1,0)) text(x=11, y=1550, label=calcStats(RG2mean, type="mad"), adj=c(1,0))
- SD distributions
esd <- apply(exprs(erma), 1, sd) Rsd <- apply(log2(RG.norm$R), 1, sd) Gsd <- apply(log2(RG.norm$G), 1, sd)
RG1sd <- apply(log2(cbind(RG.norm$R[,1], RG.norm$G[,2])), 1, sd) RG2sd <- apply(log2(cbind(RG.norm$R[,2], RG.norm$G[,1])), 1, sd)
dev.set(2)
hist(esd, main=AffyMain, breaks = 12, xlim=c(0,1.5), xlab="Standard deviation")
text(x=1, y=8000, label=calcStats(esd, type="median"), adj=c(1,0))
text(x=1, y=7300, label=calcStats(esd, type="mad"), adj=c(1,0))
dev.set(3) hist(Rsd, main=InHouseMain, breaks = 100, xlim=c(0,1.5), xlab="Cy3 interspot standard deviation") text(x=1, y=3000, label=calcStats(Rsd, type="median"), adj=c(1,0)) text(x=1, y=2700, label=calcStats(Rsd, type="mad"), adj=c(1,0)) Sys.sleep(1) hist(Gsd, main=InHouseMain, breaks = 100, xlim=c(0,1.5), xlab="Cy5 interspot standard deviation") text(x=1, y=3000, label=calcStats(Gsd, type="median"), adj=c(1,0)) text(x=1, y=2700, label=calcStats(Gsd, type="mad"), adj=c(1,0))
dev.set(4)
- Dye pair seems to add about another 10% noise (0.107/0.113, 0.107/0.114)
hist(RG1sd, main=InHouseMain, breaks = 100, xlim=c(0,1.5), xlab="Cy3/Cy5 interspot standard deviation") text(x=1, y=3000, label=calcStats(RG1sd, type="median"), adj=c(1,0)) text(x=1, y=2700, label=calcStats(RG1sd, type="mad"), adj=c(1,0))
hist(RG2sd, main=InHouseMain, breaks = 100, xlim=c(0,1.5), xlab="Cy3/Cy5 interspot standard deviation") text(x=1, y=3000, label=calcStats(RG2sd, type="median"), adj=c(1,0)) text(x=1, y=2700, label=calcStats(RG2sd, type="mad"), adj=c(1,0))
- CV
dev.set(2) hist(esd/emean, main=AffyMain, breaks = 12, xlim=c(0,0.2), xlab="Coefficient of variation") text(x=0.15, y=6000, label=calcStats(esd/emean, type="median"), adj=c(1,0)) text(x=0.15, y=5500, label=calcStats(esd/emean, type="mad"), adj=c(1,0))
dev.set(3) hist(Rsd/Rmean, main=InHouseMain, breaks=80, xlim=c(0,0.2), xlab="Cy5 interspot coefficient of variation") text(x=0.15, y=3000, label=calcStats(Rsd/Rmean, type="median"), adj=c(1,0)) text(x=0.15, y=2700, label=calcStats(Rsd/Rmean, type="mad"), adj=c(1,0)) Sys.sleep(1) hist(Gsd/Gmean, main=InHouseMain, breaks=80, xlim=c(0,0.2), xlab="Cy3 interspot coefficient of variation") text(x=0.15, y=3000, label=calcStats(Gsd/Gmean, type="median"), adj=c(1,0)) text(x=0.15, y=2700, label=calcStats(Gsd/Gmean, type="mad"), adj=c(1,0))
dev.set(4)
- Checking a Dye swap, also about a 10% error added dye to dye swap (0.009/0.01)
hist(RG1sd/RG1mean, main=InHouseMain, breaks=80, xlim=c(0,0.2), xlab="Cy3/Cy5 interspot coefficient of variation") text(x=0.15, y=3000, label=calcStats(RG1sd/RG1mean, type="median"), adj=c(1,0)) text(x=0.15, y=2700, label=calcStats(RG1sd/RG1mean, type="mad"), adj=c(1,0))
hist(RG2sd/RG2mean, main=InHouseMain, breaks=80, xlim=c(0,0.2), xlab="Cy3/Cy5 interspot coefficient of variation") text(x=0.15, y=3000, label=calcStats(RG2sd/RG1mean, type="median"), adj=c(1,0)) text(x=0.15, y=2600, label=calcStats(RG2sd/RG1mean, type="mad"), adj=c(1,0))
- ------------------------- Summary diagnostics ------------------------------- #
- Means
signal <-
c( calcStats(emean, type="median", addText=FALSE), calcStats(Rmean, type="median", addText=FALSE), calcStats(Gmean, type="median", addText=FALSE), calcStats(RG1mean, type="median", addText=FALSE), calcStats(RG2mean, type="median", addText=FALSE), )
noise <-
c( calcStats(emean, type="mad", addText=FALSE), calcStats(Rmean, type="mad", addText=FALSE), calcStats(Gmean, type="mad", addText=FALSE), calcStats(RG1mean, type="mad", addText=FALSE), calcStats(RG2mean, type="mad", addText=FALSE) )
xmean <- cbind(signal, noise) rownames(xmean) <- c("Affy", "Cy5", "Cy3","Cy3/Cy5 1", "Cy3/Cy5 2")
- SD's
signal <-
c( calcStats(esd, type="median", addText=FALSE), calcStats(Rsd, type="median", addText=FALSE), calcStats(Gsd, type="median", addText=FALSE), calcStats(RG1sd, type="median", addText=FALSE), calcStats(RG2sd, type="median", addText=FALSE), )
noise <-
c( calcStats(esd, type="mad", addText=FALSE), calcStats(Rsd, type="mad", addText=FALSE), calcStats(Gsd, type="mad", addText=FALSE), calcStats(RG1sd, type="mad", addText=FALSE), calcStats(RG2sd, type="mad", addText=FALSE) )
xsd <- cbind(signal, noise) rownames(xsd) <- c("Affy", "Cy5", "Cy3","Cy3/Cy5 1", "Cy3/Cy5 2")
- CV's
signal <-
c( calcStats(esd/emean, type="median", addText=FALSE), calcStats(Rsd/Rmean, type="median", addText=FALSE), calcStats(Gsd/Gmean, type="median", addText=FALSE), calcStats(RG1sd/RG1mean, type="median", addText=FALSE), calcStats(RG2sd/RG2mean, type="median", addText=FALSE), )
noise <-
c( calcStats(esd/emean, type="mad", addText=FALSE), calcStats(Rsd/Rmean, type="mad", addText=FALSE), calcStats(Gsd/Gmean, type="mad", addText=FALSE), calcStats(RG1sd/RG1mean, type="mad", addText=FALSE), calcStats(RG2sd/RG2mean, type="mad", addText=FALSE) )
xcv <- cbind(signal, noise) rownames(xcv) <- c("Affy", "Cy5", "Cy3","Cy3/Cy5 1", "Cy3/Cy5 2")
print(xmean) print(xsd) print(xcv)