Difference between revisions of "Beta distributions"
From Organic Design wiki
m (→Symmetry of α Β: Adding a pause between plots) |
m |
||
| Line 21: | Line 21: | ||
</table> | </table> | ||
| + | ==R code example 1== | ||
Lets generate a beta distribution using the ''rbeta'' built in R function. | Lets generate a beta distribution using the ''rbeta'' built in R function. | ||
<table class=document-code><tr><td> | <table class=document-code><tr><td> | ||
| Line 36: | Line 37: | ||
==Symmetry of α Β== | ==Symmetry of α Β== | ||
| + | ==R code example 2== | ||
<table class=document-code><tr><td> | <table class=document-code><tr><td> | ||
quartz() | quartz() | ||
Revision as of 03:55, 2 August 2006
Contents
Beta distributions
For details on the beta distribution see WikiPedia:Beta distribution. Notice that thee distribution is symmetric for the parameters p, and q (α & β in the Wikipedia article formula), and that the x axis range is from 0 to 1, a probability.
Beta distributions have many shapes depending on the parameters. Their flexibility makes them useful for modelling uniform distributions &Beta(1,1) right through to symmetric or skewed distributions.
R programming language
For help on functions which create/manipulate beta distributions see;
|
?beta # or help(beta) ?rbeta # or help(rbeta) |
Usage examples are provided at;
example(beta) example(rbeta) example(dbeta) example(pbeta) example(qbeta) |
R code example 1
Lets generate a beta distribution using the rbeta built in R function.
quartz() # Alter the parameters n <- 1000 # Number of observations p <- 0.1 q <- 0.1 x <- rbeta(n, shape1= p, shape2=q) breaks <- seq(0,1, length=21) hist(x, breaks=breaks, freq=FALSE) lines(density(x, adjust=0.4), col="red") |
Symmetry of α Β
R code example 2
quartz()
# Alter the parameters
n <- 10000 # Number of observations
for(i in 1:50) {
p <- q <- i
x <- rbeta(n, shape1= p, shape2=q)
breaks <- seq(0,1, length=21)
hist(x, breaks=breaks, freq=FALSE, main=paste("p=",p, ", q=", q, sep=""))
lines(density(x, adjust=0.4), col="red")
Sys.sleep(1)
}
|



