Difference between revisions of "Beta distributions"

From Organic Design wiki
m (Symmetry of α Β: Adding a pause between plots)
m
Line 21: Line 21:
 
</table>
 
</table>
  
 +
==R code example 1==
 
Lets generate a beta distribution using the ''rbeta'' built in R function.  
 
Lets generate a beta distribution using the ''rbeta'' built in R function.  
 
<table class=document-code><tr><td>
 
<table class=document-code><tr><td>
Line 36: Line 37:
  
 
==Symmetry of &alpha; &Beta;==
 
==Symmetry of &alpha; &Beta;==
 +
==R code example 2==
 
<table class=document-code><tr><td>
 
<table class=document-code><tr><td>
 
  quartz()
 
  quartz()

Revision as of 03:55, 2 August 2006

Beta distributions

For details on the beta distribution see WikiPedia:Beta distribution. Notice that thee distribution is symmetric for the parameters p, and q (α & β in the Wikipedia article formula), and that the x axis range is from 0 to 1, a probability.

Beta distributions have many shapes depending on the parameters. Their flexibility makes them useful for modelling uniform distributions &Beta(1,1) right through to symmetric or skewed distributions.

R programming language

For help on functions which create/manipulate beta distributions see;

?beta # or help(beta) ?rbeta # or help(rbeta)

Usage examples are provided at;

example(beta)
example(rbeta)
example(dbeta)
example(pbeta)
example(qbeta)

R code example 1

Lets generate a beta distribution using the rbeta built in R function.

quartz()
# Alter the parameters
n <- 1000 # Number of observations
p <- 0.1   
q <- 0.1
x <- rbeta(n, shape1= p, shape2=q)
breaks <- seq(0,1, length=21)
hist(x, breaks=breaks, freq=FALSE)
lines(density(x, adjust=0.4), col="red")

Symmetry of α Β

R code example 2

quartz()
# Alter the parameters
n <- 10000 # Number of observations
for(i in 1:50) {
p <- q <- i
x <- rbeta(n, shape1= p, shape2=q)
breaks <- seq(0,1, length=21)
hist(x, breaks=breaks, freq=FALSE, main=paste("p=",p, ", q=", q, sep=""))
lines(density(x, adjust=0.4), col="red")
Sys.sleep(1)
}

See also

BetaDistributions.R