Difference between revisions of "Beta distributions"
From Organic Design wiki
m |
m (→Symmetry of α Β) |
||
Line 39: | Line 39: | ||
quartz() | quartz() | ||
# Alter the parameters | # Alter the parameters | ||
− | n <- | + | n <- 10000 # Number of observations |
for(i in 1:50) { | for(i in 1:50) { | ||
p <- q <- i | p <- q <- i | ||
Line 46: | Line 46: | ||
hist(x, breaks=breaks, freq=FALSE, main=paste("p=",p, ", q=", q, sep="")) | hist(x, breaks=breaks, freq=FALSE, main=paste("p=",p, ", q=", q, sep="")) | ||
lines(density(x, adjust=0.4), col="red") | lines(density(x, adjust=0.4), col="red") | ||
+ | Sys.sleep(1) | ||
} | } | ||
</table> | </table> |
Revision as of 03:54, 2 August 2006
Beta distributions
For details on the beta distribution see WikiPedia:Beta distribution. Notice that thee distribution is symmetric for the parameters p, and q (α & β in the Wikipedia article formula), and that the x axis range is from 0 to 1, a probability.
Beta distributions have many shapes depending on the parameters. Their flexibility makes them useful for modelling uniform distributions &Beta(1,1) right through to symmetric or skewed distributions.
R programming language
For help on functions which create/manipulate beta distributions see;
?beta # or help(beta) ?rbeta # or help(rbeta) |
Usage examples are provided at;
example(beta) example(rbeta) example(dbeta) example(pbeta) example(qbeta) |
Lets generate a beta distribution using the rbeta built in R function.
quartz() # Alter the parameters n <- 1000 # Number of observations p <- 0.1 q <- 0.1 x <- rbeta(n, shape1= p, shape2=q) breaks <- seq(0,1, length=21) hist(x, breaks=breaks, freq=FALSE) lines(density(x, adjust=0.4), col="red") |
Symmetry of α Β
quartz() # Alter the parameters n <- 10000 # Number of observations for(i in 1:50) { p <- q <- i x <- rbeta(n, shape1= p, shape2=q) breaks <- seq(0,1, length=21) hist(x, breaks=breaks, freq=FALSE, main=paste("p=",p, ", q=", q, sep="")) lines(density(x, adjust=0.4), col="red") Sys.sleep(1) } |