Difference between revisions of "LmFit-Weights.R"
m |
m (rv) |
||
Line 16: | Line 16: | ||
RG <- new("RGList") | RG <- new("RGList") | ||
− | RG$R <- matrix(rnorm(n*preps, | + | RG$R <- matrix(rnorm(n*preps,8,2), nc=preps) |
− | RG$G <- matrix(rnorm(n*preps, | + | RG$G <- matrix(rnorm(n*preps,8,2), nc=preps) |
RG$printer <- structure(list(ngrid.c=1, ngrid.r=1, nspot.c=2, nspot.r=2), | RG$printer <- structure(list(ngrid.c=1, ngrid.r=1, nspot.c=2, nspot.r=2), | ||
class="printlayout") | class="printlayout") | ||
Line 28: | Line 28: | ||
design <- rep(c(1,-1), preps/2) | design <- rep(c(1,-1), preps/2) | ||
− | |||
− | |||
− | |||
− | |||
fit <- lmFit(MA, design=design, weights=NULL) | fit <- lmFit(MA, design=design, weights=NULL) | ||
− | |||
fit <- eBayes(fit) | fit <- eBayes(fit) | ||
topTable(fit, adjust="none") | topTable(fit, adjust="none") | ||
− | |||
− | |||
− | |||
− | |||
Line 45: | Line 36: | ||
fit$sigma | fit$sigma | ||
apply(MA$M * outer(rep(1, n), design), 1, sd) | apply(MA$M * outer(rep(1, n), design), 1, sd) | ||
− | + | ||
− | |||
# Stderr component - se(x_bar) | # Stderr component - se(x_bar) | ||
drop(fit$stdev.unscaled) * fit$sigma | drop(fit$stdev.unscaled) * fit$sigma | ||
− | apply(MA$M * outer(rep(1, n), design), 1, function(x){sd(x)/sqrt(length(x))}) | + | apply(MA$M * outer(rep(1, n), design), 1, function(x){sd(x)/sqrt(length(x))}) |
Revision as of 01:51, 2 August 2006
library(limma) options(digits=2) packageDescription("limma", field="Version")
- ========================================================================
- 0) cDNA example analysing M matrix in MAList
- ========================================================================
set.seed(2) n <- 50 preps <- 10
- ========================================================================
- 1) Generating a RGList for transformation into MAList
- ========================================================================
RG <- new("RGList") RG$R <- matrix(rnorm(n*preps,8,2), nc=preps) RG$G <- matrix(rnorm(n*preps,8,2), nc=preps) RG$printer <- structure(list(ngrid.c=1, ngrid.r=1, nspot.c=2, nspot.r=2),
class="printlayout")
- Ordering genes same ass topTable for convenience
- RG <- RG[c(4,2,1,3),]
MA <- MA.RG(RG) colnames(MA$M) <- paste("array", 1:preps, sep="") rownames(MA$M) <- paste("gene", 1:n, sep="")
design <- rep(c(1,-1), preps/2) fit <- lmFit(MA, design=design, weights=NULL) fit <- eBayes(fit) topTable(fit, adjust="none")
- Sigma component - sd(x)
fit$sigma apply(MA$M * outer(rep(1, n), design), 1, sd)
- Stderr component - se(x_bar)
drop(fit$stdev.unscaled) * fit$sigma apply(MA$M * outer(rep(1, n), design), 1, function(x){sd(x)/sqrt(length(x))})
- ========================================================================
- 2) Adding some weights for MAList
- ========================================================================
RG$weights <- matrix(1, n,preps) RG$weights[row(RG$weights)<col(RG$weights)] <- 0 RG$weights
MA <- MA.RG(RG) colnames(MA$M) <- paste("array", 1:preps, sep="") rownames(MA$M) <- paste("gene", 1:n, sep="")
design <- rep(c(1,-1), preps/2)
fit <- lmFit(MA, design=design, weights=MA$weights)
fit <- eBayes(fit)
topTable(fit, adjust="none")
fit$df.residual
- Zero weights should be identical to NA's
MA$M[MA$weights==0] <- NA designMat <- outer(rep(1, n), design)
- Sigma component - sd(x)
fit$sigma apply(MA$M * designMat, 1, sd, na.rm=TRUE)
- Stderr component - se(x_bar)
drop(fit$stdev.unscaled) * fit$sigma apply(MA$M * designMat, 1, function(x,...){sd(x,...)/sqrt(length(x[!is.na(x)]))}, na.rm=TRUE)
- ========================================================================
- 3) Added some NA's for MAList (several lines above)
- ========================================================================
design <- rep(c(1,-1), preps/2) fit <- lmFit(MA, design=design, weights=MA$weights) fit <- eBayes(fit) topTable(fit, adjust="none") fit$df.residual
- Sigma component - sd(x)
fit$sigma apply(MA$M * designMat, 1, sd, na.rm=TRUE)
- Stderr component - se(x_bar)
drop(fit$stdev.unscaled) * fit$sigma apply(MA$M * designMat, 1, function(x,...){sd(x,...)/sqrt(length(x[!is.na(x)]))}, na.rm=TRUE)
- ========================================================================
- 3) Added weights and NA's simultaneously at random for MAList
- ========================================================================
set.seed(2) n <- 50 preps <- 10
RG <- new("RGList") RG$R <- matrix(rnorm(n*preps,8,2), nc=preps) RG$G <- matrix(rnorm(n*preps,8,2), nc=preps) RG$printer <- structure(list(ngrid.c=1, ngrid.r=1, nspot.c=2, nspot.r=2),
class="printlayout")
MA <- MA.RG(RG)
ncoords <- sample(n,round(n/2)) pcoords <- sample(preps,round(n/2), replace=TRUE)
MA$M[cbind(ncoords, pcoords)] <- NA
ncoords <- sample(n,round(n/2)) pcoords <- sample(preps,round(n/2), replace=TRUE)
MA$weights <- matrix(1, nc=preps, nr=n) MA$weights[cbind(ncoords, pcoords)] <- 0
design <- rep(c(1,-1), preps/2) fit <- lmFit(MA, design=design, weights=MA$weights) fit$coeff fit <- eBayes(fit) topTable(fit, adjust="none") fit$df.residual
- Zero weights should be identical to NA's
MA$M[MA$weights==0] <- NA
- Sigma component - sd(x)
fit$sigma apply(MA$M * designMat, 1, sd, na.rm=TRUE)
- Stderr component - se(x_bar)
drop(fit$stdev.unscaled) * fit$sigma apply(MA$M * designMat, 1, function(x,...){sd(x,...)/sqrt(length(x[!is.na(x)]))}, na.rm=TRUE)