OR1Expt.R
Our Perl scripts. {{#security: Sven,Goldfinger}}
- ------------------------- OR1 dataset analysis ------------------------------ #
if (.Platform$OS.type == 'unix' ) {
sourceDir <- "/Volumes/HD2/Clinton/Data"
} else {
sourceDir <- "H:\\AllRealtime\\Concentrationsexpts\\Stats"
} filename <- dir(sourceDir, pattern="OR1.+\.txt")
- Check file path
cat("Filename is:" ,sep="\n") cat(filename, sep="\n") cat("Full path is:", sep="\n") cat(file.path(sourceDir, filename), sep="\n")
dset <- read.table(file.path(sourceDir, filename), sep="\t", header=TRUE)
dim(dset) summary(dset)
- ----------------------------- Dataset variables ----------------------------- #
- Amount = 1,2,5 mu/g ingestion/injection (3)
- Timepoint = 1,2,3,4 days (4)
- Treatment OR1 gene/Sucrose control (2)
- AM = Administration method; feeding or injection (2)
- Response = RE (relative expression)
- Took each treatment, prescribed an amount and feed/injected catapillars at
- time 0. Adult moths were distructively assessed 1,2,3,4 days after emergence.
- No catapillars were harmed during this experiment!
- ~.~.~ Note: Sucrose control was only administered at Amount=1 ~.~.~
- Convert names
colnames(dset)[4:5] <- c("AM","RE")
library(lattice)
- Formulas
- y ~ x
- y ~ x | z
- y ~ x | (z * w)
- help(xyplot), help(panel.superpose)
xyplot( RE ~ AM, data=dset)#, key=mykey)
- help(simpleKey)
mykey <- simpleKey(text=paste("Amount =",unique(dset$Amount)), space="top", columns=3) xyplot( RE ~ Timepoint| Treatment * AM, data=dset, panel.superpose=dset$Amount, groups=Amount, key=mykey)
- An example
xyplot( RE ~ Treatment| Timepoint , data=dset, panel.superpose=dset$Amount, groups=Amount, key=mykey, layout=c(4,1), between=list(x=0.3), aspect=1)
- Anova example
- help(aov), help(summary), help(formula)
- Formulas
- y ~ x
- y ~ x * z
- y ~ x/z conditional should example to y ~ x + x:z
- y ~ x %in%z is the same as y ~ x:z
- see also terms(formula(y~x/z)) etc
dset2 <- dset dset2$Amount <- factor(dset2$Amount) dset2$Timepoint <- factor(dset2$Timepoint) dset2$Treatment <- factor(dset2$Treatment) dset2$AM <- factor(dset2$AM)
- Df wrong for Timepoint need to se factors
aovobj <- aov(RE ~ Treatment * Timepoint, data=dset2) summary(aovobj)
aovobj <- aov(RE ~ Treatment %in% Timepoint, data=dset) summary(aovobj)