Difference between revisions of "R tutorial"
From Organic Design wiki
m (→User defined functions) |
m (→User defined functions) |
||
Line 149: | Line 149: | ||
Example: identity function, returns its input arguement | Example: identity function, returns its input arguement | ||
− | myfun <- function(x){x} | + | myfun <- function(x){x} <font color="red"># Creating identity function</font> |
− | myfun("foo") | + | myfun("foo") <font color="red"># Running the function</font> |
− | myfun() | + | myfun() <font color="red"># Fails: no input arguement provided</font> |
Revision as of 19:58, 15 March 2006
Resources
- Quickest way to learn R: use the Contributed Documentation (http://cran.stat.auckland.ac.nz/other-docs.html)
- Thousands of pages of documentation including short guides / reference cards
- Contributed guides for the beginner
- A Guide for the Unwilling S User (http://cran.stat.auckland.ac.nz/doc/contrib/Burns-unwilling_S.pdf)
- R for Beginners (http://cran.stat.auckland.ac.nz/doc/contrib/Paradis-rdebuts_en.pdf)
- Reference card (http://cran.stat.auckland.ac.nz/doc/contrib/refcard.pdf)
- More comprehensive contributed guides
- Using R for Data Analysis and Graphics (http://cran.stat.auckland.ac.nz/doc/contrib/usingR-2.pdf)
- Simple R (http://cran.stat.auckland.ac.nz/doc/contrib/Verzani-SimpleR.pdf)
- R for Beginners (http://cran.stat.auckland.ac.nz/doc/contrib/Paradis-rdebuts_en.pdf)
Obtaining help in R
help.start() # Browser based help documentation help() # Help on a topic (note: help pages have a set format) ? ls # alternative help method on ls function apropos(mean) # Find Objects by (Partial) Name example(mean) # Run an Examples Section from the Online Help demo() # Demonstrations of R Functionality demo(graphics) # Demonstration or graphics Functionality
- There objects are functions, to run them you must put () after the function name
Useful commands in the R environment
search() # Give Search Path for R Objects searchpaths() # Give Full Search Path for R Objects ls() # List objects objects() # alternate function to list objects data() # Publically available datasets rm() # Remove Objects from a Specified Environment save.image() # Save R Objects q() # Terminate an R Session → prompted to Save workspace image? [y/n/c]:
Command prompt
- Type commands after the prompt (>) e.g.
> x <- 1:10 # assignment of 1 to 10 to an object called 'x' > x # Returning the x object to the screen [1] 1 2 3 4 5 6 7 8 9 10
- Continuation of commands is expected after the plus symbol (+) e.g.
> x <- 1: # partial command → parser is expecting more information + 10 > x [1] 1 2 3 4 5 6 7 8 9 10
- Text following a '#' is commented out
Basic (atomic) data types
- Logical
T # TRUE F # FALSE
- Numeric
3.141592654 # Any number [0-9\.]
- Character
"Putative ATPase" # Any character [A-Za-z] must be single or double quoted
- Missing values
NA # Label for missing information in datasets
- See also help("NA"), help("NaN")
Assignment of objects
- objects must start with a letter [A-Za-z]
- "<-" The arrow assigns information to the object on the left
x <- 42 # Assignment to the left x x = 42 # Equivalent assignment (not recommended) x 42 -> x # Assignment to the right
Saving objects
getwd() # Returns the current directory where R is running setwd("C:/DATA/Microarray") # Set the working directory to another location getwd() # Check the directory has changed x <- 42 save.image() # Saves a snapshot of objects to file .RData y <- x * 2 # Make a new object called 'y' y # Return value of 'y' q() # quit R
Restart R by double clicking on the file .RData in C:/DATA/Microarray
x # Returns 'x' as it was saved to .RData y # 'y' should not exist
Object data types
- Create a scalar (vector of length 1)
a <- 3.14 # Assign pythagorus to object 'a' length(a) # The scalar is actually a vector of length 1 pi # Already have a built in object for pythagorus search() # Print the search path for all objects find("pi") # "pi" is located in package:base
- Create a vector
x <- c(2,3,5,2,7,1) # Numbers put into a vector using 'c' function concatenate x y <- c(10,15,12) y names(y) <- c("first","second","third") # Elements can be given names z <- c(x,y) z
- Create a matrix
zmat <- cbind(x,y) # cbind joins vectors together by column zmat
- Whats going on in the second column → number recycling
mat <- matrix(1:20, nrow=5, ncol=4) # Constructing a matrix mat colnames(mat) <- c("Col1","Col2", "Col3", "Col4") # Adding column names mat
- Create a list
mylist <- list(1:4,c("a","b","c"), LETTERS[1:10]) mylist mylist <- list("element 1" = 1:4,"second vector" = c("a","b","c"), "capitals" = LETTERS[1:10]) mylist
Indexing
- Subsetting a vector
x[c(1,2,3)] # Selecting the first three elements of 'x' x[1:3] # Same subset using ':' sequence generation → see help(":")
- Subsetting a matrix
mat[,1:2] # Selecting the first two columns of 'mat' mat[1:2, 2:4] # Selecting a subset matrix of 'mat'
- Subsetting a list
mylist[[1]] # Subsetting list 'mylist' by index mylist[["element 1"]] # Subsetting list 'mylist' by name 'element 1' mylist$"element 1" # Alternate way of subsetting mylist$capitals[1:5] # Selecting the first five elements of 'capitals' in 'mylist'
Plotting data
- See help pages for basic plot functions
help(plot) help(par) example(plot) par(ask=TRUE) example(hist)
User defined functions
The main strength of R is that it allows you to write your own functions. A function has the form:
myfun <- function( arglist ){ body }
File:Functions.png
Example: identity function, returns its input arguement
myfun <- function(x){x} # Creating identity function myfun("foo") # Running the function myfun() # Fails: no input arguement provided
- Graphical example from user defined function
The following function generates data from sine distributions and examines
bias variance tradeoff of a smoothing function using different smoothing parameters
"biasVar" <- function(df1=4, df2=15, N = 100, seed=1) { set.seed(seed) # 1) Data setup ylim <- c(-2,2) xlim <- c(-3,3) par(mfrow=c(2,2), mar=c(5,4,4-2,2)+0.1,mgp=c(2,.5,0) ) x <- rnorm(80, 0, 1) y <- sin(x) + rnorm(80, 0, 1/9) xno <- 500 sim <- matrix(NA, nc=N, nr=xno) xseq <- seq(min(x),max(x), length=xno) plot(x, y, main=paste("df=",df1,sep=""), xlim=xlim, ylim=ylim) # Using Splines truex <- seq(min(x), max(x), length = 80) lines(truex, sin(truex), lty = 5) splineobj <- smooth.spline(x, y, df = df1) lines(splineobj, lty = 1) plot(x, y, main=paste("df=",df2,sep=""), xlim=xlim, ylim=ylim) # Using Splines truex <- seq(min(x), max(x), length = 80) lines(truex, sin(truex), lty = 5) splineobj <- smooth.spline(x, y, df = df2) lines(splineobj, lty = 1) plot(x, y, main=paste("Bias-Variance tradeoff, df=",df1, sep=""), type="n", xlim=xlim, ylim=ylim) for(i in seq(N)) { x <- rnorm(80, 0, 1) y <- sin(x) + rnorm(80, 0, 1/9) splineobj <- smooth.spline(x, y, df = df1) sim[,i] <- predict(splineobj,xseq)$y } ci <- qt(0.975, N) * sqrt(apply(sim,1, var)) bias <- apply(sim,1, mean) rect(xseq,bias-ci,xseq,bias+ci, border="grey") rect(xseq,sin(xseq),xseq,bias, border="black") lines(truex, sin(truex)) plot(x, y, main=paste("Bias-Variance tradeoff, df=",df2,sep=""), type="n", xlim=xlim, ylim=ylim) for(i in seq(N)) { x <- rnorm(80, 0, 1) y <- sin(x) + rnorm(80, 0, 1/9) splineobj <- smooth.spline(x, y, df = df2) sim[,i] <- predict(splineobj,xseq)$y } ci <- qt(0.975,N) * sqrt(apply(sim,1, var)) bias <- apply(sim,1, mean) rect(xseq,bias-ci,xseq,bias+ci, border="grey") rect(xseq,sin(xseq),xseq,bias, border="black") lines(truex, sin(truex)) }
biasVar() # Generates data from a sine curve looking at bias variance tradeoff biasVar(df1=2, df2=30) # Lets change the smoothing parameters in the function arguements
Quiting R
rm(list=ls()) # Cleaning up: Remove Objects from a Specified Environment q()