Difference between revisions of "Plotfun.R"
(axis title changes) |
m (use ylab info for plot labelling) |
||
Line 175: | Line 175: | ||
bins <- hexbin(xbin, ybin, xbins=binNo) | bins <- hexbin(xbin, ybin, xbins=binNo) | ||
− | P <- plot(bins, type="n", main=main, ylab = | + | P <- plot(bins, type="n", main=main, ylab = ylab, xlab=expression(paste("Proportion of true null hypotheses ", pi[0], sep=""))) |
pushHexport(P$plot.vp) | pushHexport(P$plot.vp) | ||
Revision as of 02:53, 27 September 2006
extractstats <- function(data, what="FDR", alpha=0.05){
- Options for what: U, V, T, S, R, UT, FDR, FNDR, TaddV, PrRgt0, Power, PrReq1, p0, p0NW, Alphap0
- UT equals "m-R"
U <- S <- R <- UT <- FDR <- FNDR <- TaddV<- PrRgt0 <- p0 <- p0NW <- Alphap0 <- list() Power <- PrFDReq1 <- Sens <- Spec <- list() Pchar <- names(data$V) p <- as.numeric(Pchar) m0 <- round(p * data$m) names(m0) <- Pchar m1 <- round((1-p)*data$m) names(m1) <- Pchar
- if(what=="V" || what=="T" || what=="p0" || what=="p0NW") {
- return(get(what))
- }
if(what=="V"){ return(data$V) } if(what=="T"){ return(data$T) } if(what=="p0"){ return(data$p0) } if(what=="p0NW"){ return(data$p0NW) }
for(i in Pchar){ if(what=="Alphap0"){ Alphap0deparse(as.numeric(i)) <- (alpha * as.numeric(i)) / data$p0i }
if(what=="TaddV"){ TaddVdeparse(as.numeric(i)) <- (data$Ti+data$Vi) } if(what=="U" || what=="Spec" || what=="UT" || what=="FNDR"){ Udeparse(as.numeric(i)) <- m0[i]-data$Vi if(what=="Spec"){ tmp <- Ui/m0[i] tmp[is.nan(tmp)] <- 0 Specdeparse(as.numeric(i)) <- tmp } if(what=="UT" || what=="FNDR"){ UTdeparse(as.numeric(i)) <- (Ui+data$Ti) if(what=="FNDR"){ tmp <- data$Ti/(UTi) tmp[is.nan(tmp)] <- 0 FNDRdeparse(as.numeric(i)) <- tmp } } } if(what=="S" || what=="Sens" || what=="R" || what=="FDR" || what=="PrFDReq1" || what=="PrRgt0" || what=="Power"){ Sdeparse(as.numeric(i)) <- m1[i]-data$Ti if(what=="R" || what =="Sens" || what=="FDR" || what=="PrFDReq1" || what=="PrRgt0" || what=="Power"){ Rdeparse(as.numeric(i)) <- (Si+data$Vi) if(what=="Sens"){
tmp <- Si/m1[i] tmp[is.nan(tmp)] <- 0 Sensdeparse(as.numeric(i)) <- tmp
} if(what=="FDR" || what=="PrFDReq1" || what=="Power"){ tmp <- data$Vi/(Ri) tmp[is.nan(tmp)] <- 0 FDRdeparse(as.numeric(i)) <- tmp } if(what=="PrFDReq1"){ tmp <- FDRi==1 PrFDReq1deparse(as.numeric(i)) <- tmp } if(what=="PrRgt0" || what=="Power"){ tmp <- Ri>0 PrRgt0deparse(as.numeric(i)) <- tmp } if(what == "Power"){ tmp <- PrRgt0i - FDRi Powerdeparse(as.numeric(i)) <- tmp } } } }
return(get(what)) }
- extractstats2(F331, what="PrRgt0")
- extractstats(F331, what="PrFDReq1")
plotfun <- function(FDlist, what="FDR", probs=c(0.025,0.975), xlim, ylim, add=F, col="black", lty=1, xpos, ypos=0.1, psfile=F,closefile=F,method="", main, CIs = T, hexbinning=T, binNo=100, ...){
- Problems fixed... main was missing, method has no default if options not found...
if(is.character(psfile)){
postscript(psfile,horizontal=F, height=297/25.4, width=210/25.4) parcalls <- list(...) par(pty="s", mai=rep(1,4)) for(i in names(parcalls)){ par(i=parcallsi) }
}
- if(hexbinning){
require(hexbin)
- }
sim <- deparse(substitute(FDlist))
if(charmatch("EBarrays",sim, nomatch=0)){
method <- "Empirical Bayes"
} if(charmatch("Multtest",sim, nomatch=0)){
method <- "Within Gene t-tests"
} if(missing(main)){
main <- "Model Unknown"
} if(length(grep("GG", sim))){
main <- "GG-B model"
} if(length(grep("LNN",sim))){
main <- "LNN-B model"
} if(length(grep("GU", sim))){
main <- "GU-B model"
} data <- extractstats(FDlist, what)
ylab <- switch(what,
"FDR" = "False Discovery Rate", "FNDR" = "False Non-Discovery Rate", "TaddV"= "# Type I and II errors", "U" = "# not rejected given EE", "V" = "# rejected given EE", "T" = "# not rejected given DE", "S" = "# rejected given DE", "UT" = "# not rejected", "R" = "# rejected", "PrRgt0" = "P(R>0)", "Power" = "P(R>0) - False Discovery Rate", "PrFDReq1" = "P(FDR=1)", "Spec" = "Specificity, # rejected over m1", "Sens" = "Sensitivity, # not rejected over m0", "p0" = "Proportion of genes not changing", "Alphap0" = "alpha* . pi[0]" )
p <- as.numeric(names(data)) alpha <- FDlist$alpha # Check this bit
if(missing(ylim)){
ylim <- c(0,0.4)
} if(missing(xlim)){
xlim <- c(0,1)
} if(missing(xpos)){
xpos <- 0.1
}
lprob <- probs[1] uprob <- probs[2]
xbar <- sapply(data, mean) lCI <- sapply(data, quantile, probs=lprob) uCI <- sapply(data, quantile, probs=uprob)
- CIfudge <- c(seq(1,195,length=98),196:201)
xbin <- rep(p, each=length(data1)) ybin <- unlist(data)
- browser()
bins <- hexbin(xbin, ybin, xbins=binNo)
P <- plot(bins, type="n", main=main, ylab = ylab, xlab=expression(paste("Proportion of true null hypotheses ", pi[0], sep=""))) pushHexport(P$plot.vp)
if(add){
grid.lines(p, xbar)#, col=col, lty=lty) if(CIs){ #### WRONG!!! grid.lines(p, lCI)#, col="darkgrey",lty=lty) grid.lines(p, uCI)#, col="darkgrey",lty=lty) }
}else{
if(hexbinning){ grid.hexagons(bins) } if(what=="FDR") { grid.lines(p, rep(alpha, length(p)), default.units="native", gp=gpar(lty=lty, col="red")) grid.lines(p, p*rep(alpha, length(p)), default.units="native", gp=gpar(lty=lty, col="red")) }
if(CIs){ grid.lines(x=p, y=lCI, default.units="native", gp=gpar(col=col,lty=4)) grid.lines(x=p, y=xbar, default.units="native", gp=gpar(col=col,lty=lty)) grid.lines(x=p, y=uCI, default.units="native", gp=gpar(col=col,lty=4)) }
} if(closefile){
dev.off() }
return() }
save.image()
- Little function to find the maximum quickly for any statistic of interest
maxquantile<- function(dset, what, prob, subsetpi0=NULL){ if(!is.null(subsetpi0)){ tmp <- sapply(extractstats(dset, what)[subsetpi0], quantile, prob) }else{ tmp <- sapply(extractstats(dset, what), quantile, prob) } maxquantile <- max(tmp) tmp[tmp==maxquantile] }
minquantile<- function(dset, what, prob, subsetpi0=NULL){ if(!is.null(subsetpi0)){ tmp <- sapply(extractstats(dset, what)[subsetpi0], quantile, prob) }else{ tmp <- sapply(extractstats(dset, what), quantile, prob) } maxquantile <- min(tmp) tmp[tmp==maxquantile] }
- Little function to find the maximum quickly for any statistic of interest
maxmean<- function(dset, what, subsetpi0=NULL){ if(!is.null(subsetpi0)){ tmp <- sapply(extractstats(dset, what)[subsetpi0], mean) }else{ tmp <- sapply(extractstats(dset, what), mean) }
maxmean <- max(tmp) tmp[tmp==maxmean] }