Difference between revisions of "User:Saul/algebra"

From Organic Design wiki
m (Approximation Using Binomial)
(Trigonometry)
Line 22: Line 22:
 
<br>
 
<br>
 
Note: This is unending so the more steps you take the more accurate the number will be, however usually 3-4 steps is enough.
 
Note: This is unending so the more steps you take the more accurate the number will be, however usually 3-4 steps is enough.
 +
 +
== Trigonometry ==
 +
=== Various Formulae ===
 +
'''sin<sup>2</sup>(x) = sin(x) * sin(x)'''<br>
 +
'''sin(x<sup>2</sup>) = sin(x * x)'''<br>
 +
'''tan(x) = sin(x) / cos(x)'''<br>
 +
'''sin<sup>2</sup>(x) + cos<sup>2</sup>(x) = 1'''<br>
 +
'''sin(x) = cos(90 - x)'''<br>
 +
<br>
 +
'''A / sin(a) = C / sin(c) = C / sin(c)'''<br>
 +
'''a<sup>2</sup> = b<sup>2</sup> + c<sup>2</sup> - 2bc * cos (A)'''<br>
 +
<br>
 +
Note:<br>
 +
'''&plusmn; = &plusmn; &#8594; + = + &#8594; - = -'''<br>
 +
'''&plusmn; = &#8723;; &#8594; + = - &#8594; - = +'''<br>
 +
<br>
 +
'''sin(a &plusmn; b) = sin(a) * cos(b) &plusmn; cos(a) * sin(b)'''<br>
 +
'''sin(a &plusmn; b) = cos(a) * cos(b) &#8723; sin(a) * sin(b)'''<br>
 +
<br>
 +
'''sin(2a) = 2sin(a) * cos(a)'''<br>
 +
'''cos(2a) = cos<sup>2</sup>(a) - sin<sup>2</sup>(a)'''<br>
 +
<br>
 +
'''sin<sup>2</sup>(a) = ( 1 - cos(2a) ) / 2'''<br>
 +
'''cos<sup>2</sup>(a) = ( 1 + cos(2a) ) / 2'''<br>

Revision as of 05:34, 25 September 2019

Combinations and Permutations

Permutations/Pick

A permutation is a sequence where the order does matter.
This is often notated by n pick r where n is the data set - say 40 lotto balls and r is the selection count - say 8 balls.
The general formulae for permutations is:
P = n! / (n-k)!

Combinations/Choose

A combination is a sequence where the order does NOT matter.
This is often notated by n choose r - n and r mean the same thing as in pick.
The general formulae for combinations is:
C = n! / ((n-k)!k!)
Also note that:
n choose k is the same as n choose (n - k)

Binomial Theorem

(a + b)n = k=0Σn ( ( n choose k ) ak bn-k )

Approximation Using Binomial

Calculating a number to the power of another can be approximated by the following formulae:

(1 + x)n = 1 + nx + (n(n-1)x2)/2! + (n(n-1)(n-2)x3)/3! + (n(n-1)(n-2)(n-3)x4)/4! ...

Note: This is unending so the more steps you take the more accurate the number will be, however usually 3-4 steps is enough.

Trigonometry

Various Formulae

sin2(x) = sin(x) * sin(x)
sin(x2) = sin(x * x)
tan(x) = sin(x) / cos(x)
sin2(x) + cos2(x) = 1
sin(x) = cos(90 - x)

A / sin(a) = C / sin(c) = C / sin(c)
a2 = b2 + c2 - 2bc * cos (A)

Note:
± = ± → + = + → - = -
± = ∓; → + = - → - = +

sin(a ± b) = sin(a) * cos(b) ± cos(a) * sin(b)
sin(a ± b) = cos(a) * cos(b) ∓ sin(a) * sin(b)

sin(2a) = 2sin(a) * cos(a)
cos(2a) = cos2(a) - sin2(a)

sin2(a) = ( 1 - cos(2a) ) / 2
cos2(a) = ( 1 + cos(2a) ) / 2