Difference between revisions of "CXE1Anovas.R"
m |
|||
Line 1: | Line 1: | ||
# ============================================================================== | # ============================================================================== | ||
− | # Description: Insects from one line are bred at the same time. | + | # Description: Insects from one line are bred at the same time. |
# Catapillars are fed with two different treatments Esterase+Suc, or Suc | # Catapillars are fed with two different treatments Esterase+Suc, or Suc | ||
# and then at time = 0,1,3,5,7 they are killed and their RNA frozen at -80 | # and then at time = 0,1,3,5,7 they are killed and their RNA frozen at -80 |
Revision as of 04:25, 14 February 2006
- ==============================================================================
- Description: Insects from one line are bred at the same time.
- Catapillars are fed with two different treatments Esterase+Suc, or Suc
- and then at time = 0,1,3,5,7 they are killed and their RNA frozen at -80
- Four real time runs are run over different days
- Three technical replicates (3 Wells) on each 384 well plate for each insect
- are measured using real time RT-PCR
- Main variability stratums of variation of concern are;
- Differences between runs, and differences between insects
- No effect of well position across the heat block over runs should exist
- ==============================================================================
- =============================== Setup ========================================
folder <- "/Volumes/HD2/Clinton/Data" filename <- "esteraseRTcompare4runs2.txt" dset <- read.table(file.path(folder,filename), header=T, sep="\t", as.is=T) dset$Time <- factor(dset$Time / 24)
dset$Treatment <- factor(dset$Treatment, levels=c("Sucrose","Esterase"),
labels=c("Sucrose","CXE1 dsRNA"))
dset$Run <- factor(dset$Run, levels=levels(factor(dset$Run)),
labels=c("Run 4","Run 3","Run 2","Run 1"))
dset$Insect <- factor(rep(1:(nrow(dset)/3), each=3)) dset$Well <- factor(dset$Well)
- ============================ Normalization ===================================
- Normalization of realtime RT-PCR
dset$RE <- dset$Quantity/dset$NormFactor
- ==============================================================================
diag <- function(x, label) {
par(mfrow=c(2,2))
diag.plots <- function(x) { a <- plot(x$fit, x$res, xlab="fitted", ylab="residuals", main="residuals vs fitted") print(a) abline(h=0) qqnorm(x$res) jack <- rstudent(x) plot(jack, ylab="Jacknife residuals", main="Jackknife") cooks <- cooks.distance(x) if(!all(is.na(cooks))) { plot(cooks, ylab="Jacknife residuals") }
} if(missing(label)) { diag.plots(obj) } else { diag.plots(objlabel) } invisible()
}
- ==============================================================================
- ============================ Diagnostics =====================================
- Details
dim(dset) summary(dset) table(dset$Time, dset$Treatment) table(dset$Run, dset$Time, dset$Treatment)
quartz() par(mfrow=c(1,3)) hist(dset$RE) plot(density(dset$RE)) plot(sort(dset$RE), pch=".")
- =============================== ANOVA ========================================
- Response: Quantity, RE
- Biological run: Run
- Explanatory variables; Treatment, Time
- Run:Treatment:Time = Each Insect technical replicate
dset$Time <- factor(dset$Time)
- ===================== Naive ANOVA (incorrect df) =============================
obj <- aov(RE ~ Time * Treatment, data=dset) summary(obj) quartz() par(mfrow=c(2,2))
- plot(obj)
diag(obj)
- diagnostics
quartz() par(mfrow=c(1,1))
- plot(obj)
dset[c(9,19,87),] diag(obj)
- ============== Testing Run as a fixed and random effect ======================
- Estimating Run as a fixed effect or Random effect makes no difference
obj <- aov(RE ~ Time * Treatment + Run, data=dset) summary(obj) obj <- aov(RE ~ Time * Treatment + Error(Run), data=dset) summary(obj) diag(obj, "Run")
- ==============================================================================
- ================ Testing Run and Run:Time:Treatment =========================
- Estimating Run as a fixed effect or Random effect makes no difference
obj <- aov(RE ~ Time * Treatment + Run + Error(Run:Time:Treatment), data=dset) summary(obj) obj <- aov(RE ~ Time * Treatment + Error(Run + Run:Time:Treatment), data=dset) summary(obj) diag(obj, "Run") diag(obj, "Run:Time:Treatment")
- ==============================================================================
- =================== Run + Run:Treatment + Run:Treatment:Time =================
- This model does not need Run:Treatment stratum, treatment is a fixed effect
obj <- aov(RE ~ Time * Treatment + Error(Run/Treatment/Time), data=dset) summary(obj) diag(obj, "Run") diag(obj, "Run:Treatment") diag(obj, "Run:Treatment:Time")
- ==============================================================================
- ========================= Testing Run and Insect =============================
- Insect is the same as Run:Treatment:Time
default <- options(show.signif.stars=F) obj <- aov(RE ~ Time * Treatment + Run + Error(Insect), data=dset) summary(obj) obj <- aov(RE ~ Time * Treatment + Error(Run + Insect), data=dset) summary(obj)
summary(obj, split=list(Time=list(L=1, Q=2, C=3)))
options(default)
- ==============================================================================
aovtable <- function(obj) {
library(Hmisc) Sys.putenv("DISPLAY"=":0") anova.header <- t(c("$Source$","$df$","$SS$","$MS$","$F$","$p{\\;}value$")) Run <- matrix("", nc=6, nr=1) tmp <- summary(obj)$"Error: Run"1[1:3] Run[,1] <- rownames(tmp[1]) Run[1,2] <- unlist(tmp[1]) Run[1,3:4] <- round(unlist(tmp[2:3]),2) Insect <- matrix("", nc=6, nr=4) Insect[,1] <- rownames(summary(obj)$"Error: Insect"1) Insect[,2] <- summary(obj)$"Error: Insect"1[,1] Insect[,3] <- round(summary(obj)$"Error: Insect"1[,2],2) Insect[,4] <- round(summary(obj)$"Error: Insect"1[,3],2) Insect[,5] <- round(summary(obj)$"Error: Insect"1[,4],2) Insect[,6] <- signif(summary(obj)$"Error: Insect"1[,5],2) Replicates <- matrix("", nc=6, nr=1) tmp <- summary(obj)$"Error: Within"1[1:3] Replicates[,1] <- rownames(tmp[1]) Replicates[1,2] <- unlist(tmp[1]) Replicates[1,3:4] <- round(unlist(tmp[2:3]),2) aovTable <- rbind( c("$Error(Run)$", rep("",5)), Run, c("$Error(Insect)$", rep("",5)), Insect, c("$Error(Reps)$", rep("",5)), Replicates ) aovTable[is.na(aovTable)] <- "" dimnames(aovTable)2 <- anova.header latex.default(aovTable, file="/Volumes/HD2/Clinton/Latex/CXE1table.tex")#, rowlabel.just="r") invisible()
}
aovtable(obj)
- latex(aovTable, file="defaultTable")
- latex(aovTable, title="cTable", ctable=T)
- latex(aovTable, title="bookTable", booktabs=T)
#options(digits=2)
names(summary(obj))
summary(obj)$"Error: Run"1[1:3]
summary(obj)$"Error: Insect"1
summary(obj)$"Error: Within"1[1:3]
latex(anova.header)
- ============================= LSD calculation ================================
- Extracting the correct residual
MSE <- summary(obj$Insect)1[4,"Mean Sq"] resid.df <- summary(obj$Insect)1[4,"Df"] CXElsd <- qt(0.995, resid.df) * sqrt(2 * MSE / resid.df)
- use tukey ??? qtukey(0.975, 5,4) * MSE
- ==============================================================================
ls()
- fullobj <- aov(RE ~ Time * Treatment + Run + Run:Time + Run:Treatment + Error(Run:Time:Treatment), data=dset)
- summary(fullobj)
- plot(cooks, ylab="Jacknife residuals")
- identify(2:40, cooks, 2:40)
- Within doesnt make sence, fit =0
plot(obj$Within$fit, obj$Within$res)
- first principles pvalue calculation example
1-pf(1.47117 / 0.03194 , 1, 30)
- There is a significant interaction effect (Time:Treatment), but the main effect of Treatment
- has the most signal in the F values. The experimental size has probably contributed to the
- significance in the Time:Treatment interaction.
- Check assumptions after taking into account Interaction information
- Residuals normally distributed (Slight departures in normality)