User:Saul/algebra
Contents
Combinations and Permutations
Permutations/Pick
A permutation is a sequence where the order does matter.
This is often notated by n pick r where n is the data set - say 40 lotto balls and r is the selection count - say 8 balls.
The general formulae for permutations is:
P = n! / (n-k)!
Combinations/Choose
A combination is a sequence where the order does NOT matter.
This is often notated by n choose r - n and r mean the same thing as in pick.
The general formulae for combinations is:
C = n! / ((n-k)!k!)
Also note that:
n choose k is the same as n choose (n - k)
Binomial Theorem
(a + b)n = k=0Σn ( ( n choose k ) ak bn-k )
Approximation Using Binomial
Calculating a number to the power of another can be approximated by the following formulae:
(1 + x)n = 1 + nx + (n(n-1)x2)/2! + (n(n-1)(n-2)x3)/3! + (n(n-1)(n-2)(n-3)x4)/4! ...
Note: This is unending so the more steps you take the more accurate the number will be, however usually 3-4 steps is enough.
Trigonometry
Sin(30) = (√1) / 2 = Cos(60)
Sin(45) = (√2) / 2 = Cos(45)
Sin(60) = (√3) / 2 = Cos(30)
Various Formulae
sin2(x) = sin(x) * sin(x)
sin(x2) = sin(x * x)
tan(x) = sin(x) / cos(x)
sin2(x) + cos2(x) = 1
sin(x) = cos(90 - x)
A / sin(a) = C / sin(c) = C / sin(c)
a2 = b2 + c2 - 2bc * cos (A)
Note:
± = ± → + = + → - = -
± = ∓; → + = - → - = +
sin(a ± b) = sin(a) * cos(b) ± cos(a) * sin(b)
sin(a ± b) = cos(a) * cos(b) ∓ sin(a) * sin(b)
sin(2a) = 2sin(a) * cos(a)
cos(2a) = cos2(a) - sin2(a)
sin2(a) = ( 1 - cos(2a) ) / 2
cos2(a) = ( 1 + cos(2a) ) / 2
csc(x) = 1 / sin(x)
sec(x) = 1 / cos(x)
sec2(x) = 1 / cos2(x)
Quadratics
Turning Point
The equation dor the turning point x value is: -b / 2a, after that y can be derived.
Complete the Square
The completed square looks like this:
y = a(x + dx)2 + dy
a is the shape, a negative value indicates a n like shape where a positive value indicates a u like shape and if a is 0 the shape is a flat line.
dx is the negative displacement of x.
dy is the displacement of y.
Formulae
To convert a general quadratic to the completed square, use the following formulae:
y = ax2 + bx + c → a(x + b / 2a)2 - b2 / 4a + c