Difference between revisions of "Torus"

From Organic Design wiki
(rm from stub)
m (Other torus sites)
 
(4 intermediate revisions by 2 users not shown)
Line 1: Line 1:
[[Nodal/List/Loop|Loops]] can be considered as ''sets'' or ''spaces'' more closely than other kinds of lists because every item is geometrically indistinguashable - none are the start or end, there's no center, inside or outside. In geometric terms all the points of the loop form the surface of a 1-sphere.
+
== Recursive Torus ==
 +
[[Nodal/List/Loop|Loops]] can be considered as ''sets'' or ''spaces'' more closely than other kinds of lists because every item is geometrically indistinguishable - none are the start or end; there's no center, inside or outside. In geometric terms, all the points of the loop form the surface of a 1-sphere.
  
The loops actually form a hierarchy since each item in a loop can also be a loop. Geometrically this forms a recursive torus - a torus is a circle where all the points composing the circumference are also circles.
+
The loops actually form a hierarchy, since each item in a loop can also be a loop. Geometrically this forms a recursive torus - a torus is a circle where all the points composing the circumference are also circles.
  
There is a concept or ''order'', and the concept of ''matching'' combine in execution...
+
== Other torus sites ==
[[Category:Nodal Concepts]]
+
*[http://www.thrivemovement.com/the_code-fundamental_pattern The Code - Fundamental Pattern] ''- The Thrive Movement on the Torus''
 +
*[http://www.youtube.com/watch?v=PncTZQ5G0Gw What is a Rhodin Coil and how to make one]
 +
*[http://www.youtube.com/watch?v=8gu7c70t9pc&list=PL6916FE18CB1E1F8F&index=2&feature=plpp_video Pi, the Torus and Consciousness] ''- Arthur Young''
 +
*[http://www.youtube.com/watch?v=BbF82VvNFtQ&list=PL6916FE18CB1E1F8F&index=3&feature=plpp_video Torus and Space-Time - Arthur Young] ''- Arthur Young''
 +
*[http://harmonicresolution.com/Toroidal%20Space.htm Toroidal Space - Dynamic Expressive Surface Topology]
 +
 
 +
== See also ==
 +
*[[Physical space]]
 +
*[[e]]
 +
 
 +
[[Category:Nodal Concepts]][[Category:Philosophy]]

Latest revision as of 00:57, 20 April 2012

Recursive Torus

Loops can be considered as sets or spaces more closely than other kinds of lists because every item is geometrically indistinguishable - none are the start or end; there's no center, inside or outside. In geometric terms, all the points of the loop form the surface of a 1-sphere.

The loops actually form a hierarchy, since each item in a loop can also be a loop. Geometrically this forms a recursive torus - a torus is a circle where all the points composing the circumference are also circles.

Other torus sites

See also