Difference between revisions of "Holon mechanism"
m (→Multiplexing) |
m (→See also) |
||
Line 1,015: | Line 1,015: | ||
== Notes == | == Notes == | ||
<references /> | <references /> | ||
+ | |||
+ | == Related projects == | ||
+ | *[https://www.holons.io holons.io] ''- hierarchical payments'' | ||
+ | *[https://coasys.org Coasys] ''- an alternative holarchy built on holochain'' | ||
+ | *[http://weco.io/ We Collective] ''- a holonic organisational social network'' | ||
== See also == | == See also == |
Revision as of 17:05, 4 October 2024
The holarchy is just an academic curiosity if we can't represent it with a clearly definable "nuts and bolts" mechanism. In other words what data structure is involved at a program level? How does the code operate on it to actually represent the two holon behaviours that lead to the harmoniously evolving and diversifying society of self-organisations?
This article is dedicated to clearly answering these questions, but it does require a software development background to read it. The holarchy article is aimed at a more general audience, but it is also required reading for putting the context and terminology in place for understanding this article, so if you are not familiar with it, please start with that first.
Each of the four quadrants of the model are represented by actual scopes, state and process in a running holon. The run-time environment within which holons execute and progress must provide this basic means of execution itself - each private instance scope is essentially a virtual machine node progressing a self-organisation structure.
The holon has three abstraction layers, the third layer is the actual holarchy society of organisations which is analogous to the "world" consisting of culture and society. The first two layers are what the holon mechanism has to provide.
The first abstraction layer of the mechanism defines execution which takes the form of production rules organised in an evolving class-instance network space. This layer essentially creates the potential for the four quadrants, by creating the distinction between, and usage of, the public and private scopes and the organisation of production rules and their executional performance.
The second layer of the mechanism executes in the context of the private instance scope. This is where the diagonal loops and each of the quadrant loops are defined. This layer essentially extends the basic class-instance environment to enable the collective aspects of resource flow and knowledge evolution and the individual characteristics of developmental and operational progression in time.
Contents
- 1 The four-quadrant holon model
- 1.1 An agent-oriented model
- 1.2 Multiplexing
- 1.3 Cognitive architecture
- 1.4 Knowledge and patterns
- 1.5 Three abstraction layers
- 1.6 Layer 1: The primary axes
- 1.7 Layer 2: The four quadrants
- 1.8 Layer 3: Holonic self-organisation
- 1.9 Inherent behaviours and values
- 1.10 Four-quadrant holon summary
- 2 Layer zero
- 3 Layer one
- 4 Layer two
- 5 Scale-independence
- 6 Revisiting first-class citizenry
- 7 Mechanism conclusion
- 8 Concepts that have come up in meetings
- 9 Notes
- 10 Related projects
- 11 See also
The four-quadrant holon model
The purpose of the holarchy is not only individual self-organisation, but about the whole network self-organising as a harmonious self-organisation (holarchy) of self-organisations (holons).
Our four-quadrant holon model proceeds from Koestler's four concepts of the integrative (collective) and self-assertive (individual) behaviours, and the fixed-rules and flexible-strategies mapped onto an orthogonal pair of axes. The aforementioned concepts map respectively onto the top, bottom, left and right directions of these axes which we call the "primary" axes.
The quadrants are the four corners delineated by the primary axes, and reside at the ends of a pair of orthogonal diagonal axes. These diagonal axes each connect two quadrants together into the feedback loops that express the agent and arena aspects of the holon. We'll come back to the diagonals and their feedback loops further on in the article.
The quadrants are like autonomous organisational "departments" that all holons have, which ensure that they all organise themselves and collaboratively support the whole collective network in alignment and harmony.
In a holon the top quadrants maintain the collective aspects of the holarchy (ontology and market) using the peer-to-peer creative merging process described in the previous section. These are local perspectives of the whole, the whole itself is abstract, only partial perspectives onto it exist. Further more, a local representation of the whole is locally oriented too meaning that, its root, prominence and salience are determined by subjective local needs.
The holons can be composed into organisational structure of any scale and complexity. The four quadrants are common to all holons, and therefore to all organisational structure representable by holons.
This means the quadrants are extremely general fundamental concepts having a strong philosophical connection. We believe this pattern of precisely these four meanings are inherent to meaning itself (the meaning-making process), and are epistemically convergent, or in other words all contexts involving sufficient intelligence would eventually discover this specific pattern. It's no surprise therefore that we see these four meanings pop up together in many traditions throughout history, such as in the form of Aristotle's "four causes" or in philosophical Taoism which are both thousands of years old.
Perhaps the most recent incarnation of the four quadrants is Ken Wilbur's Integral Theory that's gained popularity in the last couple of decades. The quadrants in our model correspond precisely with the four quadrants of Integral Theory, but in our model the positioning of the quadrants is vertically flipped from Integral Theory. The justification for this flippage is that for our purpose, the most important attribute of "above" is its natural relation to wider scope (outward, encompassing more, collective), and conversely the natural relation of "below" to narrower scope which is more specific and deeper within. Note also that Ken Wilbur mentions the concept of an "integral holon" in some of his writing, but we're currently unsure whether his concept follows the same mapping to Koestler's core holon concepts as our model, if it does then we'd prefer to use the term "integral holon" too.
Our holon model is a refinement of Koestler's general concept which has been designed specifically for the information technology context. To define a software specification, the quadrants need to be understood in terms of specific system interactions. We introduce this refined view of the quadrants in this section, but we're also working on a more in depth and complete description in the holon mechanism article.
An agent-oriented model
Holarchy is an agent-oriented model of reality, which is a kind of middle ground between materialistic and idealistic models. It requires a logical and rational systemic underpinning while at the same time taking on an idealistic form whereby so-called "external reality" is a construct that is agreed upon and maintained by the agents in the form of experiential phenomena. In this article, we're focused primarily on holarchy as a network architecture in the context of information technology, so we leave the philosophical details for the philosophy of the holarchy article, but we mention it here because there are a few important aspects of this that concern us here.
First, in an agent-oriented reality, the model itself is genuinely constitutive of reality, rather than merely a theoretical construct or convenient fiction. This means that within the context of the holarchy, the four quadrants are not just a convenient lens through which to analyse and categorise the system, but are constitutive of the system itself. For this reason, we go into a lot of detail about the four quadrants as actual processes or "departments" of a holon.
The second implication of the agent-oriented approach is that it means the system fundamentally takes the form of a cognitive architecture, which describes how agents interact together and perceive, create and maintain their world. This is where we'll start our description of the four quadrant holon model.
The third important aspect, which was described above, is that the whole is unmanifest and abstract, only the agent's partial perspectives of the whole exist. They all behave as if the whole exists independently and externally, when objectively it is nothing more than local behaviour.
Multiplexing
The two trees are created, maintained and related by a simple process called time-division multiplexing.[1] This is a process by which a continuous flow of executional focus is quantised into arbitrary[2] units which cyclically iterate the entire instance-tree structure.[3]
This iteration process is a movement of executional focus from one node to another. When focus enters a node it's akin to the calling of a function (sub-routine) in a program, because it's moving "down" into a more specific context that is deeper within the structure. Conversely the leaving of focus after completion corresponds to the returning from the function back up the "call-tree" to the "caller" above. The movement downward is a process of division of focus, and the movement upward is a process of information integration, aggregation and propagation "upward", "outward" or "beyond".
As with traditional OOP, or indeed with organisational structure in general, this vertical directionality gives rise to a structured scope system where there is an outer public side and an inner private side to every node. These correspond to the outward-facing and inward-facing concepts in Koestler's holon model, to the outside and inside of a biological cell, or to the public and private property contexts of organisation.
In the holon, the kind of time being multiplexed is executional focus (or agentic attention more generally). The multiplexing movement of focus throughout the structure is a repeating pattern determined by the structure itself. This pattern exhibits a continuous bidirectional flow of function-like calling and returning. This can be considered as a way of representing organisational structure in general.
The multiplexing pattern of focus moving amongst the scopes is what creates hierarchy and its return. Objectively it's just a flat graph, but the movement of focus over time creates the subjective perspective of hierarchy seen from within private scopes. The return flow makes possible the sharing of structure amongst these perspectives.
Multiplexing in this way can be considered as the "collectivised" version of function calling. The compliment of function-calling is to return the result of action, which taken to it's collectivised version is a scale-independent merging or aggregation operation.
Multiplexing is the mechanism behind our implementation of the blackboard pattern and its decoupled approach to private scope. We now have a system where the operation is decoupled both horizontally (blackboard and behaviours/production-rules) and vertically as well via the "collectivised" function calling and returning model.
The multiplexing sets up a hierarchy of private-scopes as well as a thread-like nature attentional (and active) focus that returns periodically. From the local perspective, the attentional focus returns immediately which leads to local perspective appearing continuous in nature.
In a technology-stack implementing a holon, a multiplex may include continuous processes and asynchronous events, but these are integrated into the multiplex such that they allocate the attention and resource equivalently. This ensures that parent contexts occupy a consistent amount of attentional space and resource regardless of the number of threads, their depth or their specific attributes.
The multiplexing model makes deeper specialisation exponentially more costly, and incentivises the increasing of efficiency and the delegation of action to cheaper agency when the requirements permit it.
Cognitive architecture
Here we introduce the concept of a cognitive architecture and some related software design patterns that our model embodies.
The general context of the system is the self-organisation concept described above, and more specifically it takes the form of an agency-agnostic cognitive architecture, i.e. any agency can participate regardless of its attributes such as simplicity, complexity, analogue, digital, organic, electronic, photonic etc.
A cognitive architecture is a systemic foundation for agency which defines an abstract reflection of the environment it finds itself to be within. It gives participating agents a local subjective lens or point-of-view (POV) through which to perceive reality. The cognitive architecture defines its world (universe of possible experiential content and interaction).
The dynamic that takes place within this subjective individual point of view corresponds to Koestler's self-assertive behaviour. And the dynamic that occurs outside of it is the objective collective behaviour which corresponds to Koestler's integrative behaviour.
We need to introduce some general concepts involved in cognition, and their specific meanings in the context the our implementation of the holarchy concept.
The Ship of Theseus
We want to start this section of preliminary cognition-related concepts with an ancient Greek legend called the "Ship of Theseus", because it will aid us greatly in describing the dynamic pattern we're trying to achieve with the holon structure, and the subtle complexities it involves.
According to legend, Theseus, the mythical Greek founder and king of Athens, rescued the children of Athens from King Minos after slaying the Minotaur and then escaped onto a ship going to Delos. Each year, the Athenians commemorated this by taking the ship on a pilgrimage to Delos to honour Apollo. A question was raised by ancient philosophers: After several centuries of maintenance, if every individual part of the Ship of Theseus was replaced, one at a time, was it still the same ship?
Is the ship that now consists entirely of new material still the same ship? On the one hand, if we consider identity to be based on the material components, then it seems that the ship has completely changed. On the other hand, if we consider identity to be based on the continuity of the ship's form or its function, one could argue that it's still the same ship.
The ship can be seen as an idea which is embodied in all the people who manage, maintain and repair the ship along with all their related intent, knowledge, resources and procedures. If we zoom out to a long enough time-frame, then all the material is seen as continuously in flux, gravitating toward the consistent central idea.
But not only is the material aspect of the ship in flux, all the people and objects that embody the idea of the ship are also in continuous flux. Over time old workers are replaced by younger ones, and better ways of doing things replace old ways. The ship is a material form that's in flux around an organisation of roles and procedures that are also themselves in flux.
Even though this system may evolve until the form of the ship eventually becomes unrecognisable from the original, it's still quite natural for us to recognise the continuity of the ship's identity. It's natural for us, because our society as a whole functions like this, and aspects of all our daily lives and work do too. An organisation's staff, procedures and resources can all be in flux; it has staff turnover and may open new branches or change product lines and services change etc. For example, did you know that Nintendo's original line of business was hand-painted playing cards?
The Ship of Theseus is actually a network of ideas. Even though the ship itself is one specific idea, it doesn't exist in isolation, there are also many other ships and all those involved in all the ships regularly exchange knowledge all evolving together as an "idea-cluster".
The ideas are composed of many other ideas, for example the planks that compose the ships are themselves a whole evolving network of knowledge, roles, production and materials that are part of a wider network than just ships. All the ideas in the whole society are connected in some manner, and contribute to each other's evolution, all together forming an inseparable whole.
The central point of the legend is about identity and how it forms a central point around which all aspects of an idea gravitate. Extending the discussion to include the network aspect gives us a clearer picture of the kind of dynamic flow that a system needs in order to faithfully represent nature's holarchy pattern.
It's this fluid form of identity and its nature as an idea cluster that's at the core of a holon and the holarchy. We call it the class and instance system and is what we'll introduce over the next few sections.
Agency
We use the word "agency" to refer to the ability to apprehend state and instructions and perform any actions that may be implied by them. An "agent" is an actual entity of some kind which has agency, it has the ability to perform various specific actions when called upon in appropriate circumstances. Such an agent might be a user, an AI, an API or OS, a domain-specific language interpreter or many other things. An agent is an agent of change, in our system there is no agentic focus without corresponding activity.
The holarchy is an organisational system which is agency centric since it's a cognitive architecture, but yet it's also agency agnostic, which means that it interacts with any kind of agency in the same way - in the same way as our system of law applies completely to people, but yet is (ideally) person agnostic in its application. This includes being agnostic to whether the agent is simple or complex, or whether its focus is discrete or continuous in nature.[4]
Regardless of their agentic complexity, it's fair to say that all instances have a subjective local point of view consisting of the information and threads of activity within their local scope. They find themselves to be in an organisational context consisting of other sibling instances (other agentic entities) of various classes that are also encapsulating their agency within and presenting their state publicly to be apprehended by the other local siblings.
In terms of information systems, agency essentially represents the ability to execute code, and in organisations it represents the ability to fill a role and perform procedures in it. All change in a holon is due to agents changing local state by performing activities in accord with this same general pattern.
The cybernetic loop
The cybernetic loop is a fundamental concept in cognitive science taking the form of a specific kind of feedback loop. It represents a dynamic process where a system continuously monitors its output, compares it to a desired target state, and then adjusts its actions to minimise the difference, or error, between the two. This kind of loop is also called a control loop, error-correction loop or negative-feedback loop in some disciplines. We usually use the term "control loop".
This iterative loop enables systems to self-regulate and maintain stability by making continuous adjustments based on incoming information, ensuring that they remain on course or adapt to changing conditions. The cybernetic loop plays an essential role in a wide variety of system, from simple thermostat-controlled heating systems to complex organisms and robotics, facilitating effective control, adaptation, and optimisation of processes and systems.
Body schema
The final complex structure that emerges in the local subjective scope of a holon follows the same pattern as the abstract mental representations we have of our own bodies, a concept called the "body schema" in cognitive science.
This internal representation and awareness that individuals have of their own bodies, includes their size, shape, position in space, and the relative positions of body parts. It plays a critical role in our ability to perceive and interact with the external world.
At its core, the body schema involves a continuous feedback loop where sensory information from the body, such as proprioception (awareness of body position) and tactile feedback, is constantly processed and compared to a mental representation of the body. This representation is adjusted based on the incoming sensory data to ensure an accurate perception of one's body and its relationship to the environment. This process can be hierarchical, involving multiple levels of abstraction, and it allows us to perform tasks with precision, adapt to changes in our body's state, and navigate the world effectively.
In essence, the body schema embodies a sophisticated form of the cybernetic loop. A holon has an information data structure that operates in this same pattern in accord with the cybernetic loop, but we refer to it in this context simply as the "self-representation".
The self-representation includes not only the current state, but also the future (objectives) and the past. The future is incorporated by acting as objectives for how the self-representation should be, the self-representation also serves as an interface permitting abstract concepts and ideas to actualise as actions manipulating the external world - it is an ontological representation of reality allowing it to be organised.
It's a lot easier to make the connection between the body-schema and a holon's self-representation when we consider that our body-schema extends beyond our bodies in the form of tools and technology. And even beyond that into the wider culture and society as our values and property become part of our body-schema control structure.
Memes
The concept of a meme was coined by Richard Dawkins in his 1976 book "The Selfish Gene". It refers to an idea, behaviour, or cultural element that spreads and replicates through imitation and cultural transmission. Just as genes carry biological information, memes carry cultural information, evolving and propagating as they're passed from one individual or generation to another. Memes can encompass a wide range of cultural phenomena, including customs, rituals, fashion trends, catchphrases, and more, playing a crucial role in the evolution of human culture and society. As we've seen in recent years, the internet has allowed memes to spread and evolve much more rapidly, and AI promises to multiply this still more.
Memes are a very similar concept to our idea of the self-representation (in the body-schema sense) within a holon which is effectively a "behaviour package" (a rule-set). Adaptation and evolution are enabled by all instances of the same class forming a community which aggregates metadata about the packages and is automatically shared.
This is the same as molecules, proteins and cells that make up an organism all being in flux around form determined by the organism's DNA. Likewise, our own mental cognitive symbols are in flux around forms within the collective unconscious. This lecture by Daniel Denette is a great introduction to biological evolution, cultural evolution, memes and even internet memes.
Focus
The holon is itself a group of holons which we call siblings. All the siblings find themselves together in a private informational context through which they can express themselves to each other. The context represents a particular objective that the siblings collaborate together on, and which is provided by the holon - the parent of the sibling group which the group are in service of. In IT terms we'd say that all the siblings are parallel child threads in a shared private scope owned by the parent object.
The focus is the combination of content and thread aspects of system execution. It is the actualised content in the present moment in the context of a particular sibling (that is visible and accessible by the sibling).
The focus occupies a "moment" (also called a "session" or "slot") in time, the duration is context-dependent, for example on the type of agency involved. During this moment the agent performs an action determined by the current condition of shared local context.
Scope
In information technology, the term "scope" refers to the names that can be locally referred to by a process. The context mentioned above that agency finds itself within is called "private" scope, and consists of a list of sibling names, which are other things that "reside" within that same scope, such as information and other agents, which are said to be "local" to each other.
We also have "public" scope, which is the subset of the private local names that are made available to the parent context. And "non-local" scope which is network-wide and will be introduced further on.
Salience
Focus applies to the present moment and refers to the energy that brings the present moment into being in a particular scope allowing an action to be performed. Salience refers to what will receive focus due to being instantiated ("installed" into the local scope) or "connected into time". Salient things are "in our field of awareness".
Salience, focus and agency all go hand-in-hand as none are meaningful without the others. In terms of organisation, salience is the types of activities (behaviours) that may need to performed, and agency is the ability to actually perform them. Roles that may need to be filled, and those able to fill the roles.
Activity
Focus and activity go hand in hand, all focus is in the form of activity being performed. A holon as a whole is a continuous timeline made up from structured threads of activity. A single action occurs in single moment of focus, and the whole stream of activities makes up a thread of "experience".
Focus is always within the context of an activity in a particular state of progress or completion. The top-level activity aspect of a holon is constituted from a future component above, a past component below and the present in the middle.
Activities have a "lifecycle", they start off initially as just intention without any commitment of resource externally. Eventually they reach a mature enough state that they start to form commitment where actual roles and resources become involved. Once such resources are "filled in" sufficiently, aspects of the activity become imminent ("booked into schedules"). Eventually they make their way down into the present where they become active in production generating accounts of completed (past) activity with corresponding state and reputational changes. And finally their informational aspect is integrated both locally and beyond.
Self-representation
A self-representation is an informational structure that represents the state of the holon itself. This is a necessary aspect of an autonomous agent that's based on a continuous improvement cycle. A holon is a continuously improving self-representational structure, developing itself as an organisation and its state of position.
We mentioned above that the holon's self-organisational structure is called its self-representation and is the holon's equivalent of a body-schema. Here we want to go into a little more detail about this self-representation data structure.
The state of a holon-instance is the informational content contained within the instance's scope. Since an instance involves three kinds of scope (public, private and non-local), it also contains three kinds of state corresponding to them. We refer to these three aspects of state all together as simply state.
The private and public state together are called the foreground-state. They're the values associated with the unique names constituting the instance's private and public scope, which is really just a single scope, private by default, but may have any amount of it presented as its public interface.
The non-local aspect of state, also called class-state, background-state or default-state, is the state that the instance has as default by virtue of its class (or more precisely, by virtue of the internal class structure that the class defines). Any local foreground state overrides the default structure and state provided by the class. This is essentially the same way that instances extend and override their classes in traditional OOP.
A holon's state is a continuously maintained self-representation, an abstract version of its real-world counterpart. An information structure that represents the holon's instantiated behaviours and the state of the real resource under its ownership and control. The instance state has exactly the same meaning as in traditional OOP, its the way that the structure and continuity of it are handled that differ.
The representation is bidirectional, on one hand it's always changing to reflect the current state of reality, and on the other it can be used as an interface through which intentions are expressed.
An instance is an informational structure which follows the pattern determined by its class, and also represents its specific real-world state. Any organisation follows this same familiar pattern, they're abstract patterns that we use to manage our resources and information together in society. So the informational structure of an instance is a representation of both the class pattern and of actual resources that fall within its designated objectives.
Its important to note that the representation is not the actual resource, but rather an abstraction of it. The holarchy does not directly contain any of the resources that are being organised by it, rather it contains metadata about the resource. Imagine a spreadsheet of our finances for example, the specific file in question is an instance that represents some financial state in the real world such as bank transactions and balances. This spreadsheet instance also represents a definite spreadsheet idea that determines the structure and methods available in the context of any spreadsheet instance.
The operational work of an instance is to use informational connections to resources to maintain a representation that is ontologically structured in accord with the class. The state of the structure is continuously fitted to the real state of the resource outside the holarchy.
Instances use this representational mechanism to serve as interfaces allowing us to interact with and organise our information and resources using an evolutionary ecosystem of established organisational patterns.
First-class citizens
In the context of programming languages, a first-class citizen is an entity which supports all the operations generally available to other entities. These operations typically include being passed as an argument, returned from a function, and assigned to a variable. In most OOP contexts, objects are first-class citizens, meaning they can be instantiated, manipulated, and passed around in the code just like other basic data types.
The holarchy is not a programming language or OOP environment in the traditional sense, since it's a higher level of organisation based on general cognitive agency. But we use the term regarding holons to imply that every holon instance has all the same inherent four-quadrant form as every other holon instance, regardless of it's depth in the hierarchy of instances, its complexity or simplicity.
First-class citizens are all equal in the sense that they could all evolve into anything else, all essentially have the potential of becoming any other. Holons are all first-class citizens, each having a continuous identity with material, knowledge, objectives and production all in flux around it, like the Ship of Theseus.
Knowledge and patterns
The class-instance concept expressed by the Ship of Theseus legend is all about knowledge and behaviour patterns. Essentially knowledge represents behaviour patterns, it can be communicated, learned, embodied, taught, used, adapted and assessed.
Knowledge is a behaviour pattern in shareable (communicable) form, functionally it depends on community, it is a non-local concept. In a community context, the assessment, adaptation and selection of knowledge leads to an inherent evolutionary aspect to knowledge. Knowledge, language, community and evolution are all interdependent aspects of a single fundamental class-instance mechanism.
An agent can use or embody knowledge locally by establishing it in their self-organisational structure. The more the agent uses it, the more established it becomes. The cost of operating it becomes lower, the embodiment becomes more efficient, which is the patterns becoming more "habitual".
Knowledge is a consistent map of what's established in usage including variations, ordered with the most used being most prominent towards the root. This "meaning map" is a decentralised process involving all local embodiments (instances) of a particular pattern (class).
For our purposes, "behaviour pattern", "organisational pattern" or simply "pattern" are interchangeable terms. Knowledge is what a pattern represents, and the class is the permanent identity by which we refer to and share the knowledge pattern.
The class-instance system is the foundation of the holon model, it's the mechanics that define what we mean when we say "behaviour pattern". Being the "foundation" means its the part of the system that's defined in program code, so we need to introduce a few key software concepts before getting on to the specifics of class and instance.
Production rules
The lifecycle of an activity might simply consist of a single session of a single agent's focus, or it could be a very complex hierarchical structure of projects and roles that activate under specific local conditions throughout time. Activities can be in a variety of organisational forms all determined by their structure, such as continuously developing, reoccurring, one-off, conditional, pipelines and cyclical.
Rules can be composed into complex workflow structures, allowing for the expression of complex logical relationships. Production rules are widely used in expert systems, business rules engines, and knowledge-based applications.
Production rules play an important role in automating decision-making processes, enabling systems to make reasoned choices, offer recommendations, and adapt to changing circumstances based on the knowledge encapsulated in these rules.
Production rules provides a powerful means to represent systems and knowledge that may take all these myriad forms. A production rule consists of two essential parts: conditions and actions. Such rules can be simple and binary such as "if X is the case, then do Y", or they may be very continuous and general such as "while X seems to be an issue, perform behaviour Y to mitigate it".
The rules themselves are in a form that is understandable and actionable by the relevant local agency. There is nothing in the rule content that refers to control-flow or workflow, the flow of focus is determined entirely by the structure of rule composition. In fact it's this lack of reference to control-flow (called a declarative execution paradigm) that gives production rules an inherent composability with each other.
It's the structure of the production rules that defines the conceptual meaning of the organisation, not the agent-oriented content of its production rules. In our system the rules follow the self-organisational structure introduced above.
This pattern allows complex workflow (organisation, control-flow, program execution, process) to be intuitively understandable without specialist knowledge about the workflow mechanism itself.
The blackboard metaphor
This local scope that agents find themselves within when they receive attentional focus follows the blackboard metaphor of execution which, in the case of a holon, goes hand-in-hand with the production rule pattern. The blackboard metaphor represents a group of experts collaborating together around a blackboard, where they each contribute insights toward solving a complex problem.
It's a way to harness collective intelligence in systems with multiple agents, each with specific abilities. This modular and flexible approach allows for emergent solutions and the leveraging of specialised expertise without requiring any single agent to solve the problem alone.
It's widely used in artificial intelligence and distributed computing for its adaptability and collaborative problem-solving capabilities. It's also often chosen for its decoupled approach where agents can collaborate on a problem without needing to coordinate directly with each other.
The organisation that takes place within a biological cell bears striking resemblance to the blackboard metaphor, especially when combined with the production rule concept. The cell essentially defines a local private scope containing resources and enzymes, which is like the private blackboard shared by a set of relevant sibling agents. And the conditions matching relevant actions is like the cell expressing or suppressing particular behaviours in response to it's immediate needs (by dynamically regulating its biochemical pathways and functions in response to environmental conditions).
Workflow and behaviour
What we've been discussing with the blackboard and production-rules is often referred to as "workflow" or "organisation". It's not really referred to as a software design pattern, because it's quite a general concept. It concerns primarily process description and execution. Using the term "workflow" (or "organisation") rather than "execution" or "process" implies operation at a high level of abstraction.
Traditionally production rules are considered to be very discrete in their function, for example the condition part is considered to be similar to an "if-then" statement. But by implementing the production rules in their own private persistent scope as per the blackboard pattern, the rules are permitted to operate asynchronously. The blackboard pattern decouples the agents (knowledge sources) from each other so that they're free to interact via the scope in their own time. This makes the workflow much more flexible so that it can represent complex patterns of behaviour.
Knowledge is in the form of shareable behaviour patterns, production-rule sets in the form of condition:action pairs. Each pair is a feedback loop with the local environment (a cybernetic loop) which can be thought of as the generalised continuous version of a traditional production rule. These design patterns all working together form a kind of continuous workflow and improvement paradigm, which closely resembles the body-schema concept introduced above.
Class and instance
The Object Oriented Programming (OOP) paradigm was created in the 1950's to try and better fit the data structures and functions of software engineering to the actual entities in real life that were being represented by the software system.
OOP uses "objects", which are instances (specific occurrences) of classes (templates or "blueprints"). Over the years a huge variety of paradigms and languages have emerged that incorporate various aspects of OOP, and also exhibit many new variations on the theme to better fit the dynamics between processes, knowledge, material and agency we experience in the real world. The main difference between OOP paradigms essentially comes down to differences in their functionality of classes and instances.
A class acts as a blueprint for creating objects, defining the properties and behaviours that the objects will have, in other words it is the pattern of behaviours. For instance, if you have a class named Car, it might define properties like colour and make, and behaviours such as drive and stop. An instance, on the other hand, is an actual object created from a class. It represents a specific example of the class with its own unique values for the properties, such as Fred's red Toyota car. While a class provides the template, instances are the real objects you work with in your programs.
A holon is very much like an object in OOP, having public interface and private scope, but rather than the encapsulated (private) behaviours being defined by program code, they're defined by production rules structure operating as continuous behaviour patterns as described in the prior sections.
When we say "patterns of behaviour" we're drawing on the fundamental concepts of "class" and "instance". The term "pattern" implies the ability to repeat a behaviour, refer to it and communicate it. The term also implies composition and structure which, as discussed above, production rules and behaviours are compatible with.
Class and instance are two interdependent concepts which are essentially another software design pattern, although they're so ubiquitous that they're an inherent part of the design of most programming languages, and so are rarely called a design pattern. We'll call them a pattern here, because we're defining our own specific version of the concepts that depend on the software environment for only very basic data-structure capability (one which can support the aforementioned workflow concept).
This pattern is really a "meta-pattern", it encapsulates the concepts of defining and re-using patterns of behaviour or functionality. A class is an abstract "package" of functionality defining how the package would function if it were represented by some actual functional resource - i.e. how a local instance of it would behave.
A "class" is essentially a name (also reference or identifier) that refers to a specific abstract grouping of other class-names, and "instance" refers to a specific "pool" of actual operational resource that is arranged in such a way as to represent classes in its operation. Classes represent sets of related behaviours, whereas instances are groups of actual agents capable of performing behaviours along with its current state of development.
The class aspect of a holon is analogous to Koestler's fixed rules concept, it defines structured possibility space within which instances can select and enact appropriate activities from all the possible ones. In other words, classes define how an instance of it would behave if various conditions were the case.
The instance aspect corresponds to Koestler's flexible strategies, where the behaviours that are expressed match the present local conditions.
We started this section on knowledge and patterns by saying that knowledge, language, community and evolution are all interdependent aspects of a single fundamental cognitive behaviour pattern. All these design patterns working together play a big part in connecting all these aspects into a single system, and we're now ready to start talking about the four quadrants which are the form that this single system takes.
This idea of an instance interacting via a public interface which encapsulates its internal workings is called abstraction. The class defines the interface and internal structure that its instance will follow. A class is conceptual whereas the instances are actual (actualised in time), and we say it's an abstraction of its instances.
Class and instance are extremely fundamental concepts, because they define the actual processes behind behaviours, patterns, encapsulation and abstraction, actually implementing those concepts and bringing them into being. It's the functionality behind the fluid nature of a holon's identity to work in the way outlined by the Ship of Theseus example above.
Class mix-ins
Classes need to be composable, they need to be able to be combined into new combinations. Different OOP paradigms use different approaches for how composability is achieved. One method called "class mixins" allows classes to be instantiated into the context of existing instances. This matches the holon context well because it's exactly the same idea as sets of productions rules operating together in the same local scope in accord with the blackboard pattern.
An organisation is a whole structure of mixin-instances that are activating in schedules and in accord with present conditions. This is the holon's self-organisational structure or "self-representation", it's a mosaic of instances of various classes that can be organised in dynamic ways that match the local circumstances and preferences. In other words a specific sub-set of the possible expression space defined by the class.
A good example of this type of dynamic class-instance relationship and structure is a live streaming music mix channel. This channel consists of a structured schedule of music themes as well as potential spontaneous or quasi-random aspects. The content of the channel is composed of mixes and remixes of existing classes from the evolving establishment.
Within the mosaic are many structured instances that operate in accord with clearly defined behaviour structures and present themselves in the form of clearly defined interfaces. These knowledge structures specialise and evolve through establishment in usage within all the local instance structure mosaics.
Evolution
Evolution can be boiled down to an extremely simple dynamic in its general form. David Deutsch describes it as "the creation of knowledge through alternating variation and selection". Note that we're talking about the general principle of evolution here, not specifically biological evolution.
Human culture is evolutionary knowledge. It depends on, builds on, and consists of, other knowledge, and is always evolving in diversity and complexity. Knowledge and evolution go hand-in-hand, they're interdependent concepts.
The complexity we see in evolutionary systems (such as biological evolution) is due to the evolutionary dynamic itself, which tends towards ever more diversity and complexity. But the underlying dynamic responsible for all this complexity remains simple and unchanged.
The nature of knowledge is to evolve in diversity and complexity. It's not just inert information, it's a dynamic process involving subjective values and application within diverse conditions. Our genes, our culture, our society and our own minds are all structures of evolutionary knowledge, even though their media and selection mechanisms differ.
The evolutionary knowledge principle actually incorporates the class-instance concept within it. The evolutionary dynamic is an extension of the basic class-instance concept.
If we think about some actual examples of class-instance systems in our daily lives such as a market ecosystem of producers, vendors and consumers or software version control systems and their ecosystems like Github we see that they always have a community ecosystem side and a local usage side. We always find that the ecosystem evolves and the local uses specialise.
The holon model incorporates both of these sides with the evolutionary principle in the form of an extension to the basic class-instance concept.
The creation of variations and their selection correspond to the integrative and self-assertive behaviours respectively, as well as to the classification and instantiation respectively, of the holon. The integrative side is the improvement of evolutionary knowledge in terms of its usability and the potential gained by those who use it, and the self-assertive side permits the improvement of our own position through selection in accord with our own needs and preferences.
Summary of the form of knowledge and patterns
Let's summarise the concept we've described in these prior sections on the knowledge and patterns of the holon. It's a class in instance system in the object-oriented sense, where the instances form a mosaic of instantiated classes matching local circumstances and preferences. This concept gives us a general description of the aspects needed to replicate the evolving "idea-clusters" that the Ship of Theseus drew our attention to.
The class-instance system incorporates the collective aspect that represents the many local instances and the market of real resource. Both the class and instance spaces as a whole collective and individually are evolving and continuously improving and specialising.
The instances are holon-agents having subjective perspectives and local private continuous threads of activity and state. The classes present together in these local scopes are all continuous behaviours and are composable into useful combinations operating asynchronously together just like memes. They all operate locally together to maintain a self-organisation structure or self-representation. In this way we have a community of holons all developing as classes and operating as instances.
So far what we have is a clear idea of a concept that we can visualise, but we don't have any detail about how it might be implemented, it's like a set of nice-to-have features for the system. In the next sections we'll discuss this class-instance evolutionary concept more specifically as an implementable system model. The model takes the form of three abstraction layers and has four distinct aspects to its behaviour.
Three abstraction layers
An abstraction layer is a conceptual framework or set of functions that hides the complexities of lower-level operations, allowing users to interact with a system or software component in a simplified and standardised manner. It serves as a bridge between different levels of a system, enabling efficient communication and interaction while shielding users from the underlying technical details. Abstraction layers are commonly employed in software development to promote modularity, scalability, and ease of use.
The internet itself is organised into abstraction layers with various communications protocols which we call the internet protocol "stack". The first and most fundamental layer's protocols govern the way information is communicated in the physical cables, occupying middle layers are protocols governing things like IP addresses, domain names and encrypted connections, and the top layers are high-level application protocols concerning things like social networking and voice over IP (VOIP).
In a running system, each layer can be seen from an instance perspective as being a society of instances that all interact together via a common set of interfaces. Interfaces are "provided" and "used" just like the client-server model, for example how Amazon provides an interface to the market and Uber provide an interface to transport. In terms of the internet protocol stack, we might look at the clients of the IP layer as all the connected devices and users having their individual IP addresses, or the clients of the social networking layer being all the social identities that can present themselves and interact via the a particular social networking protocol, for example the so-called Fediverse is all the identities who can be interacted with via the ActivityPub protocol (as well as some other open social protocols).
In the running system, these layers are logically independent (but not existentially independent), each layer defines interfaces that hide its own complexity from the new layer within. The instances (of interface usage) composing a running layer are free to collaborate fully on the content and evolution of their "user space" independently, higher layers set the general rules (protocol) for lower layers.
Our model has three abstraction layers. The the first (L1), is the process that results in the class-and-instance environment, within which the second abstraction layer operates. In our model this layer represented as vertical and horizontal axes, which is represented in the diagram by the blue "plus" to the right.
The vertical is considered the primary of the two, and represents the instance concept. The horizontal is secondary and derived from the first and represents the class concept. Together they produce the class-instance environment for the next layer to build upon and extend. When discussing the inner workings of the mechanism, we treat these two axes as separate layers themselves in which case the vertical is called layer zero (L0), and the horizontal is layer one.
The second layer (L2) is the "subjective" perspective from inside the instance's private scope. In other words it's a new abstraction layer occupying the "user space" defined by the first layer, the usage of the class-and-instance concept.[5]
The second layer is where the actual functionality of four quadrants (by which the model itself is usually referred to) is defined. The quadrant processes take the form of feedback loops between diagonal opposites, and we represent this in the diagram by the green cross to the right. These diagonals represent the fundamental variation and selection aspects of the evolutionary system, or in other words, the actual usage of the class and instance concepts.[6]. The four quadrants individually are like independent departments within an operating organisational instance all aligned in their overall purpose.
The third layer (L3) is the space of fully functioning holons (self-organisations) forming a structure of arbitrarily complex meaning. This new layer occupies the "user space" defined by the second layer, i.e. the quadrants that were functionally created in layer two are utilised in this layer. In this environment, all content self-organises and progresses as an evolving society of organisations, a holarchy of holons. Holons in layer three are the users of layer two's quadrant system using the interfaces provided by the individual quadrants.
The third layer is an independent self-organising self-evolving society of holons. This is shown as the purpose circle to the right in the diagram. All holons are self-sovereign first-class citizens, completely independent and autonomous, but at the same time they all inherently ("unconsciously") represent the first two layers in their behaviour.
Layer 1: The primary axes
In terms of functionality, the first layer brings about the class and instance environment discussed above. This is essentially the layer that defines the process of abstraction itself by which subsequent layers are possible.
But in this section, we're concerned with the model (conceptual meaning) rather than the functionality. The mechanism that defines the functionality of the first layer is beyond the scope of this article, and so we're being deliberately vague about many points in this section. The reasons why these primary axes take on the meanings described here will be covered in detail in the holon mechanism article.
The mechanism results in a number of important fundamental conceptual meanings which also form the most general characteristics for subsequent layers. These concepts are represented as the primary (vertical and horizontal) axis pair, which are shown in the image to the right, and are also depicted as the blue "+" in the diagram of layers above.
The four quadrant system informs and responds to change, but is not the ultimate actualisor of it.[7] The system does not define change itself, it only organises it ontologically to be utilised by the actual agents of change. In terms of the diagram, the change occurs in the centre as an action representing the current class and instance.
Both class and instance concepts take the form of a scope (namespace) concept with the positive end representing being not within the scope, and the negative side being within it.[8][9]
The first kind of scope is the usual public/private vertical dimension that we're used to with an object from OOP, these are instance scope forming the instance tree. The second kind of scope, which is complimentary in its operation to the first, are class scope making up the class tree.
Within this primary axis pair, the instance tree is the primary or original axis and the class tree is derived from it. Even though instances are instantiated from and guided by their classes, they depend entirely on the instances to represent them, because only the instance actually exist by being backed by real resource.
The top is public, the bottom is private, the left is abstract and the right is actual. Each primary direction defines a meaning that's common to a pair of quadrants. In terms of functionality this layer creates the scopes and a feedback loop dynamic, but it does not actually do anything within these scopes in terms of creating or responding to change - that's where the second abstraction layer comes into play. We won't go into any more detail about the first layer in this article, the mechanism that brings about the scopes will be discussed in more detail in the holon mechanism article.
Layer 2: The four quadrants
The four quadrants occupy the second abstraction layer of the model. As discussed above, the first layer primary axes define the most general contextual features for the four quadrants - what scopes they operate within, and the meanings that the upper, lower, left and right sides have.
The first layer made possible a new subjective local perspective, and the second layer is halfway between these two perspectives, having "a foot in each side". The lower quadrants represent the inner local subjective perspective, and the upper quadrants represent the outer collective perspective.
We often refer to layer two as the "objective-subjective", because it's an objective "unconscious" process like layer one, but it occurs in the local subjective scope. The third layer also takes place in this subjective scope, but all change is carried out by agency (the agents of change) in the third layer.
The inherent form of the quadrants is that they're grouped into a pair of feedback loops connecting diagonally opposite quadrants. These are the variation loop and the selection loop constituting the evolutionary system. We use the word "inherent" because the information flow that defines these diagonal feedback loops between opposite quadrants are created by the first layer mechanism. The mechanism itself is beyond the scope of this article, what we cover herein is the meaning of these scopes and loops.
Before we go into any detail about the diagonals, we need to have a clear conceptual understanding of the individual quadrants. The easiest way to introduce the quadrants is to start with the already-familiar class and instance concepts on the left and the right respectively, and then divide them into an upper collectivised version of the pair and an individuated version below. The image to the right demonstrates this with the original class-instance axis horizontally in the middle.
The top quadrants represent the local holon's perception of, and contribution to, the whole tree (graph) of classes and instances, which we call "ontology" and "market" respectively. Since it's a bottom-up peer-to-peer architecture, these collective-oriented top quadrants are not the whole itself (which would have to be "centrally served"), they're a local representation of the whole from the local subjective perspective with self at the centre.
The bottom quadrants represent the local holon's internal private world. This lower pair is conceptually more fine-grained than the general (and abstract) class-and-instance concept represented by the horizontal axis. They represent the local subjective meaning of the class and instance dynamic. Classes are designed to be instances, their utility and purpose comes from how they behave within their subjective instantiated contexts. The internal class quadrant in the bottom-left is called "development" and it takes the form of conditional structure (the condition aspect of the production rule structure). The internal instance quadrant in the bottom-right is called "production" and represents the holon as a progressing activity (the action aspect of the production rules).
Each of the quadrants is delineated by the vertical and horizontal axes of the first layer discussed above. This means they each represent a pair of scopes, one from each primary axis. This gives us a clear foundation from which to derive the meaning and process for each quadrant that forms its concept of progress.
Since the processes are operating on the same state (all being aspects of the same holon), they must be complimentary and non-destructive to each other. But as we've described, the de-coupled production rule and blackboard model gives us exactly the non-destructive process-form we need here.
Why the quadrants?
The four quadrants are usually only discussed in the context of philosophy, and so it can be confusing as to why we give them so much attention when we're in an information engineering context not a philosophical one. But due to the holarchy being a very ontologically fundamental, we obliged to take a specific philosophical position. Being an agency or experiential oriented system places it firmly in the idealistic camp, but also it's a definite informational system which is strongly materialistic.
Agent-oriented models sit somewhere in the middle and might be best identified with something like computational realism. In this context, the four quadrants are not just a convenient "lens" through which to analyse the experienced world, but rather are the form of the actual processes permitting experience itself.
The quadrants are "real" in the sense that in a running holon, each has a specific executional thread representing it, so that each receives it's own portion of the total executional focus available to that holon. Each quadrant is an important and permanent aspect of the holon as a whole, very much like a department in an organisation.
The holon as a whole represents structured state and its path forward through time, and each quadrant represents a different perspective on what "progress" means and how it expresses that form of progress with its local behaviours.
As discussed above, the foundation use-case of the holon is as a self-organisation system which was described as being a kind of "smart folder structure" that represents our lives informationally and also acts as an organisational interface to them.
The four quadrants are four different aspects of the "self-organisation application", the bottom two are the familiar for of class structure and actualised instance structure that we're used to, and which we would expect of the "smart folder structure".
But we're not just individuals, our lives take place in the collective context of culture and society. The top two quadrants represent the class and instance aspects in their "collectivised" forms of ontology and economy respectively connecting us with and present wider contexts of knowledge and the market ecosystem.
Introducing each quadrant
The second abstraction layer of the holon model is all about the function and dynamics of the quadrants, it doesn't concern any user-facing aspects of the quadrants. We'll look at each of the quadrants again from the user perspective when we discuss the third abstraction layer of the model. Following a brief introduction to each of the four quadrants in terms of the functionality and meaning.
Top-left (ontology)
This quadrant is the "collectivised" version of the class concept. It's a left quadrant, which means that it concerns abstract knowledge which is not actualised in time. It's also a top quadrant putting it in the public scope, which means it's a peer-to-peer collective contribution process. This quadrant is called "culture" in Integral Theory, and it's Aristotle's "formal cause", which is often described as a "blueprint".
This quadrant takes the form of an ontology of classes connected in a semantic network of dependence and relevance (a class-tree). These grouping (dependency) relations as a whole form a large associative network. But from the perspective of any specific node, there is a "fan-out", a one-to-many hierarchy of dependent child nodes, and grand-children etc to any arbitrary depth. These hierarchical structures determine the form of instances. The ontology is the map of the ecosystem of behaviours established in usage.
Knowledge is not just dead information, it needs to be embodied behaviourally. It applies to a group within which it's established in collective usage. The variational aspect of the evolutionary principle is essentially about sharing aggregated performance information associated with the conditions, i.e. the objective and circumstance requiring the activity. This is how the ontology represents usable collective knowledge from classes established in usage.
All instances of like classes form into knowledge-sharing groups. In this way, every class in the ontology (global class graph) is a community and a map of all the instances of that class.
The knowledge is naturally shareable and understandable, because the group of all instances of one class are essentially a special-interest group - they all have interest in the same specialist knowledge associated with that specific class.
The purpose of knowledge is to be used. To use it requires it to be embodied by a holon, in the form of classes that are "installed" (connected into paths of potential focus) into the local environment where they can activate it (in the bottom-right quadrant) in response to appropriate local conditions as they arise. Knowledge is not just opinion, it's determined by how effectively it's used. For the ontology to assure utility, it must include this performance aspect with the knowledge and the performers of it.
The ontology is structured by class names, and contains information about how those classes perform as children filling roles in various classes of organisation. The result is an ontology of behaviours associated with actual ability to perform them. These are the abilities that back objectives making them actualisable (by instantiation, making them potential and then imminent).
Although this is the non-local (collectivised) ontology, it's important to remember that even though it's a view of the collective, it's still from the local perspective of an individual local holon. It's the non-local unified ontology, but from the perspective rooted in the current class (which is performing the current activity).
The ontology evolves in diversity and complexity as the instances develop themselves (bottom-left) and share their usage knowledge (bottom-right). It's a collective form of progress which is evolutionary in nature, not a self-assertive control loop.
Bottom-right (production)
We call this the production quadrant which takes the form of a self-assertive control-loop maintaining the private self-representation since it's a bottom quadrant. Since it's on the right, it's actualised in time involving concrete resource. This is Integral Theory's "behavioural" quadrant and Aristotle's "efficient cause" which is the agent that brings something into being.
In terms of the self-organisation, this quadrant is responsible for maintaining the local instance of the organisation operating in the local environment. It carries out the process that fits the local self-representation to the real state it represents, and allows it to act as an interface to it.
This quadrant involves the actual achievement of the holon's objectives (in the bottom-left). Production is a control-loop that reduces the difference between the current resource state and the expected state.
An actual agent has filled a role in the local context and performed behaviours towards achieving the various objectives. The holon has gained "experience" by putting its knowledge to use in service of the holons own private developing objectives in the bottom-left.
The holon's internal production and development are in the form of structured production rules, and the "production" quadrant is the action/activity side of the rules.
In this aspect of the organisation, we're in the private scope of production using private property.[10] Production takes the form of a control loop that continuously moves towards goals set by the bottom-left development (intention) quadrant.
This quadrant is all about past, because it's about the accounting of an activity after it's been performed. The final account on completion is signed and immutable and contributes to the ontology (top-left) which has the current condition at it's root. The information contributed to the ontology is the performance, the account compared to the initial expectation, in the context of the condition (parent) that it's responding to. In this way the local knowledge is contributed to where it's relevant.
The production quadrant represents the actual state of production of the holon, such as materials, access, stock, accounts etc including the state of completeness if applicable. This quadrant represents the actual performance of behaviour informationally which we call "accounts" (i.e. an accounts of activities). Performance of behaviour is carried out in accord with the top-left "ontology" quadrant, and final performance with respect to expectations is presented to the ontology for aggregation. The results of production contribute to the objectives in the bottom-left quadrant, as well as providing and consuming resources via the top-right quadrant.
Bottom-left (development)
This is a bottom quadrant so, like the bottom-right, it takes the form of a self-assertive control-loop in private scope within the holon. It's on the left so it concerns abstract knowledge that is not actualised in time. Unlike the bottom-right control-loop, this quadrant concerns knowledge rather than resource.
This is the "development" quadrant, and is called the "intentional" quadrant in Integral Theory (we often refer to it by that name as well). It's Aristotle's "final cause" or telos, the objective or purpose for which something is done or exists. For example, the telos of a knife would be to cut.
In the quadrant, the holon is navigating in potential space, developing its knowledge, intentions and objectives. This is the structural aspect of the private self-representation, its embodied pattern of behaviour. It represents the meaning of the organisation that informs development decisions.
The objectives are defined by the condition-side of the internal production rule structure. A specific condition arising makes a subset of actions and variants salient, to be refined, selected and acted upon in the right-hand production quadrant.
Objectives concern the future and so this quadrant works in conjunction with the top-right resource-flow (economy) quadrant which is also about the future.
The development quadrant represents the holon's objectives in the form of a structure of embodied behaviours. This structure represents the embodied and salient aspect of the holon class behaviours from the ontology (top-left), backed by resource from the market (top-right) and attained by production (bottom-right).
Top-right (economy)
This quadrant is at the top so it's a collective contribution in public scope, and being on the right it's within the context of actualised linear time. We call this quadrant "economy", because its purpose is to harmoniously allocate limited resource amongst a potentially unlimited demand for resource. This is Integral Theory's "society" quadrant, and Aristotle's "material cause".
It seems at first glance that connecting the meanings of "economy", "society" and "material cause" across these systems is contrived to fit our designs. But remember that we're in the agent-centric organisational context of a holon, where "external material reality" is in purely resource-flow terms, and is the merging of all local perspectives. This quadrant represents the local state of resource-flow expressed in supply-demand terms by the instances occupying the public scope. The resource-flow effectively represents the total of all committed objectives. That is, the intentions expressed in all the bottom-left quadrants throughout the holarchy.
Essentially the economy concept describes a free market based resource allocation system used and supported by a network of autonomous participants. These entities have the autonomy to choose what goods or services to produce or consume, at what price, and from whom.
In terms of the self-organisation, this quadrant represents the interface between the public and private sides of the holon. Its organised by linear time in the future and so from the user perspective it takes the form of a schedule. The schedule is an organisational "container" in which roles and resources are "booked" by instances that fill the roles.
A holon requires real resource in order to function. In other words, the self-organisation structure represented by the bottom-left quadrant needs resource organised by the top-right quadrant to represent it. Such a representation exhibits expectation and after it's completed will exhibit performance with respect to it.
Objectives are defined in terms of external resource state in the future, and so this quadrant inherently relates the bottom-left development quadrant. This relationship takes the form of a feedback loop which we'll come back to below.
This quadrant allows the holon to participate in the wider market, all together forming the economy (the society of organisations).
Assurances
The whole must assure (prove, demonstrate) that it effectively maximises the harmony, autonomy and potential for both the individuals and the whole. If it doesn't, then it's not truly worthy of their membership. The whole relies for its very existence on the support of its members, so its effectiveness and the evidence for it is the foundation of its own security.
The collective aspects are abstract, emerging from the many participating as network nodes. but yet it's this collective aspect that provides the assurances that are really the sole reason for participating. The reason that participants choose to participate is because the holarchy offers assured benefits. It offers usable and reliable knowledge in the form of the ontology and offers opportunity and a harmonious environment in the form of the economy. The knowledge needs to be usable and reliable, in other words it needs to provide assurances of its utility.
The holons are all contributing to a global state of institutional predictability,[11] which concerns a stable operating environment in which plans can be made. The assurances come from the fact that the protocol itself objectively and unconditionally includes the integrative behaviour.
With assurances of stable operation comes the possibility of expectations through the accumulation of knowledge about operation, and from expectations we can assess performance.
The diagonals (⤫)
As is quite intuitive and can be seen in the diagram to the right, the quadrants naturally form a diagonal pair of axes. But the diagonals also represent the actual algorithmic/mechanistic connections between the quadrants too. We won't go into the details of the mechanism behind the formation of the four quadrants in this article, but the diagonals are one specific consequence of this mechanism.
There is an important conceptual reason for the diagonal connections as well which is that classes are made specifically to perform in local subjective contexts as instances, and the basis of all classes is a feedback loop that orients the performance towards the form it defines (so that the state and development gravitate around the evolving form of the concept like the Ship of Theseus). What this means is that collective class meaning is defined in relation to individual instance, knowledge is defined in relation to performance, which is the top-left to bottom-right diagonal.
On the other hand, class structure requires real resource backing, and so its collectivisation is the instance world. The instance collective structure is defined in relation to salient class structure, which is a connection between the bottom-left and top-right quadrants.
Within the world of the actual functioning holon developing and operating in its local context, the control loops are both connected to their opposite collective state, and this state is backed by a collectivisation process. The second abstraction layer of the holon takes the form of diagonal feedback loops. each composed of two loops connected together inputs to the outputs of their partner. The upper end is a collective loop and the lower end is an individual control loop.
The functionality of the quadrants takes the form of a pair of feedback loops connecting the diagonally opposite partners.[12]
These two diagonal loops constitute dynamics of second abstraction layer of the model that refine the four quadrants behaviours and connect them all together into a harmonious whole. They extend the basic class-instance functionality of the first layer to an agent-arena dynamic involving developmental progress and evolutionary knowledge.
The diagonals are the form of the "application" presented by level two for use by level three. Just as the class-and-instance mechanism was the level one provided for level two's use.
The diagonal relationships are due to the form of the diagonally opposite quadrants being complimentary so that each diagonal forms a feedback loop. The quadrants meanings derive from these feedback loops, and so in this section we look in more detail at these two loops.
The four quadrants occupy the corner areas delineated by the primary axes (vertical and horizontal), and so all quadrants are situated on the diagonal axes as shown in the image to the right. These axes represent the actual connections giving rise to the function of a holon.
The bottom two quadrants represent the familiar self-oriented organisational context. These each connect to their opposite outward partner, the bottom-left connects to the top-right forming the selection loop, and the bottom-right connects to the top-left forming the variational loop. The former extends the instance-tree to include the evolutionary concept of selection to become a "multiplex of intention". The latter extends the class-tree to become an ontology of variations of knowledge in use.
Each loop is a distinct way the collective forms from the individual behaviour, and conversely how the individual is guided by the collective. Each is a co-evolutionary loop just like the first layer class-instance loop is.
Both loops are derived from and extend the primary feedback loop dynamic form into a new concept involving knowledge derived from the local internal scope. One diagonal extending the instance-tree and the other the class-tree.
In each loop-extension there is a rating (evaluation, feedback) of the associated tree involved. The selection loop involves a subjective rating in accord with local intentions and preferences, and the variational loop involves the objective rating of local productive performance and use. Both loops involve local rating and non-local merging of the rating information. In both loops, local decision-making is guided by the non-local aggregate information.
Both loops also have an "inertial" aspect where they're "installed" into the local environment as ongoing behaviours. They become easier to perform and continue over time and take energy to stop ("uninstall").
The collective can be thought of as a "service provider" (albeit a non-local peer-to-peer one) that evolves with the clients needs, and the individual (as the client) is guided by and uses the service. The ontology is a service utilised by an agent in production, and the economy is a service utilised by a consumer.
Naming the diagonal loops
The naming of the loops has been difficult and has changed a lot (only the names, not the functionality). They generally correspond to class and instance, but it would be confusing to use those names since they're terms used in layer one, something that sums up the meaning of their use to become the evolutionary system and involving the subjective perspective is required.
We've finally settled on the names of "agent" and "arena" for the class and instance oriented diagonals respectively.
The class tree clearly involves the behaviour patterns established in usage in the top-left and the actual patterns being performed in the bottom-right. Local development clearly aggregates to form the instance tree in the form of a mosaic image of intention (salience, selection).
Arena loop (⤢)
The diagonal consisting of the bottom-left and top-right quadrant (⤢) forms the arena loop (the mosaic) and is associated with the self-assertive behaviour, the instance tree and the past-future dynamic. It extends the first layer instance tree represented by the primary vertical axis.
The bottom-left quadrant represents the self-organisational (or body-schema) structure, which is a structure of recurring behaviours. The top-right quadrant represents the schedule of committed resource that enables the performance of these behaviours.
The diagonal axis of the arena loop extends the first layer instance tree from a purely attentional flow to a more refined concept that includes the aggregate of local market knowledge coming from subjective value judgements and decision-making.
This axis represents the holons presenting itself in its self-assertive form in the public market. In other words, its public state as an autonomous self-organisation in the public market. This self-assertive expression of economic commitment, is the form that the aforementioned subjective rating takes. This is the subjective evaluation of instance, and expression of that evaluation through attentional (and resource) support. The directed support is how objectives are determined, the selection loop is results driven (declarative) and focused on the future.
This axis represents the holon as a sub-class group from above interacting together as an organised structure of loops from past in the bottom-left to future (schedule) in the top-right. This is the mosaic of class-mixin instances referred to earlier.
This loop represents the selection aspect of evolution, and the foundation of selection is the flow of attention, which is the salience landscape, the distribution of weights that determine the flow of focus throughout the instance structure. Salience is distributed internally (bottom-left) as the tentative virtual branches extending from what's represented in the resource flow (top-right).
From the user (self-organisation) perspective this diagonal represents the market interface. The organisational structure can publicly present supply and demand schedules of various resources. The holon presents various consumer and producer interfaces and states publicly. This is how commitments are made that permit actual production, and all together make up the whole resource-flow.
The arena loop is an organisational structure spanning internal behaviours as well as resource schedules. Salience is distributed across the structure, and directing this distribution over time is self-development. Organisational structure and its salience are the common form of the bottom-left and top-right quadrants.
The loop is a bidirectional instance-tree process of interaction between internal virtual instantiation (exploring a concept) and the public market of actual resources and value. The private virtual content is essentially a "replaying" and "remixing" mosaic of instances from the public arena.
The public content (the the flow of resource as a whole) which is the total of all the internal virtual instances in the whole network that have become backed by real resource (through persistent salience). In other words, a context starts as a purely abstract concept that can be explored and gain more focus and resource, becoming booked into public resource schedules.
The top-down side of the arena loop is the flow of focus and resource that determines which instances and conditions are active (selected). The feedback flowing from the bottom up is intention, or subjective valuation of the context.
Agent loop (⤡)
The diagonal consisting of the top-left and bottom-right quadrants (⤡) forms the agent loop and is associated with the integrative behaviour, the class tree and energy in the present. It extends the first layer class tree which is inherently ontological in nature due to representing the dependency and relevance relationships between classes (classification process).
The top-left is the ontology of behaviour patterns, and the bottom-right is the actual performance, or usage of them in the local private production context. Both ends of the variational loop concern the execution aspect of the system in terms of utility and performance.
The ontology in its basic form is created in the first layer, based on volume of usage. Then in the second layer it's extended to include the performance metrics corresponding to the specific performers of the behaviours. This process expresses the principle that knowledge is not black and white, it's embodiment is proven and assessed through actual performance.
In this subjective inner context, the information being aggregated is the performance of the knowledge in-use internally. This aggregate knowledge is the performing-instance's "reputation" or potential effecting it's likelihood of being matched in the market again in the future.
In user or self-organisation terms, this diagonal represents the usage of the knowledge in the operation of the organisational structure. This diagonal represents the execution in the present on the bottom-right, and the establishment formed by all execution in the present throughout the network, i.e. what is established in usage.
The agent loop is a bidirectional class-tree process of interaction between internal usage and execution of a behaviour and the institutional map of knowledge relating to the behaviour. This loop is responsible for the variational aspect of evolution.
The top-down side of the agent loop is the institutional knowledge and guidance (map) flowing inward from the collective class. The bottom-up feedback side is the objective performance (of the embodied knowledge) and usage statistics of local production in aggregate form.
The intersection of agent and arena
The arena loop is primary and the agent loop is in the context set by it, because the behaviour patterns are what is established in usage, and the arena is the actual use. It's also because the former is extended from the first layer instance tree and the latter from the first layer class tree. And as a whole, the first layer defines the functionality of the whole class and instance mechanism, and the second layer is the instantiated space of instances (users) of the layer one class-instance mechanism.[13]
First the arena loop activates, the internal intentions are created in the bottom-left, and then are enabled by the backing of real resource in the top-right. The merging of the commitment schedules of many holons, creates potential for resource exchange leading to the whole resource-flow.
Then the agent loop activates, the selected instances perform in private production in the bottom-right. All other things being equal amongst candidate suppliers (performers) are prioritised according to their performance metrics. Actual performance takes place in the bottom-right and is fed back to refine the knowledge of the whole in the top-left.
This matching occurs diagrammatically in the centre where the two diagonal axes cross. This intersection process is a subjective value judgement. This is where the process that matches supply to demand, resulting in committed (contracts) resource backing the objectives over time takes place. The selection (forming the mosaic image of the arena) is based on the evaluation of the class and instance aspects. In other words how well the instance is achieving its fundamental purpose as a representation of its class, and how well the instance is bringing value to the local context.
The arena loop concerns organising schedules and so is related to the past and future, while the agent loop concerns the behaviours established in usage and their performance in the present. The market match is the interaction between agent and arena.
The first level provided the basic subjective context in which conceptual structure has a directional aspect. This leads to the self being at the centre in the here and now, with its subjective perspective of the world surrounding it. The second level extends the subjective context to include an inherent ability to assess things in terms of potential and performance, so that both the class and instance structures are continuously improving in their fundamental utility.
The diagonal loops (and the individual quadrants they're constituted from) have specific meanings that derive from their extension of the general meaning provided by the first abstraction layer, each progressing the holon in their own specific yet complimentary way as well as the class and instance structures as a whole continuously improving and evolving. The result is a holon which embodies a rich set of general organisational behaviours; it participates in the evolution of knowledge and the economy as well as progressing its individual knowledge and material position.
To expand on a key concept in the previous paragraph: the economic and evolutionary foundations present in the two diagonals have not been deliberately designed, they're inherently provided by the first layer structure. All we've done is naturally extend the first layer with its own dynamics in the subjective second layer and the diagonals naturally take on these meaningful dynamics.
Although the second layer concepts such as evolution, knowledge, expectation etc are very conceptually rich and complex compared to the first layer, they are a very basic version of the systems they represent (evolution and economy). The evolutionary aspect of the system boils down to the distribution and management of variations and selections, and the economic aspect is a simple free market dynamic involving supply and demand commitments and schedules. They form a neutral conceptual foundation on top of which larger objectives and methodologies can be expressed.
The holon model acts as an "ontological wrapper" allowing any information, knowledge, systems or resources to be interacted with in universally understandable meaningful terms. Ontologically representing all the common organisational aspects of it such as the time period it covers, it's state of completion, behavioural or performance aspects, purpose or value.
Layer 3: Holonic self-organisation
The third abstraction layer in the system is the organisational environment - a self organising network of self-organisations. Every node making up the network of content in the third layer is a complete holon, and a first-class citizen. The third layer represents the user perspective since it's the layer representing interactions involving complete individuals. This layer is a society of organisations in which they all represent themselves as self-organisation structures all having the two loops and four quadrant aspects.
From the user's perspective, the top quadrants are seen as the public interface through which the local holon interacts with the collective. These top quadrants are like services provided by the collective (although the collective is the collaborative aggregate of all individual holons). The top-left is the "map" interface to the ontology as a service, and the top-right is the "schedule" interface for interacting with the flow of real resource.
The bottom quadrants revolve around our self-representation, the abstract ontological structure and informational state of our self-organisation. The structure changes through the holons development in the bottom-left quadrant, and the representation is kept up to date (fitted to reality) and progressed towards objectives by the production process in the bottom-right.
The quadrants in the third layer
As described above, the quadrants are scopes (fields of activity) formed from definite informational connections and processes, but in this third abstraction layer we're in the context of fully operational holons, so the quadrants are to be understood in their "organisational department" forms.
Interaction in the context of organisational departments takes the form of organisational roles. Each of the quadrants departments has two clear roles operating within it, an outward facing role and an inward facing role. Following is a brief summary of the roles that match each of the quadrants.
It should be noted that these roles may be divided into further sub-roles within depending on the complexity of the organisation. And also that these roles are deliberately designed to be general and to fit with the four-quadrant structure, because the intention is that they are to be thought of as kind of intermediary "virtual roles" that will be filled by AI. We'll talk more about AI's roles in the organisation further on.
Top-left (ontology)
We usually call this quadrant the institutional quadrant when we're in the third layer context, due to it being a source of guidance for instances to follow. The institutional aspect is the organisational structure, or public map, that forms around the aggregated collective intelligence making it navigable and accessible to all. It's essentially an informational portal maintained by the users of the knowledge, or in other words, a peer-to-peer institution.
Curator: The outward-facing role is best described as a curator, a role that organises and categorises the ontology ensuring that our own local information and structure is coherent. The role is outward-facing because the coherence is a global collaborative affair requiring alignment with all local perspectives.
This role is closely related with the educational aspect of the holon as well, because its focus is making the ontology and the underlying holarchy principles more accessible and understandable.[14]
Advisor: The inward-facing role is about ensuring that the local organisation is using the knowledge of the ontology to the best effect. This is a role who has very good general knowledge and is very familiar with the ontology as a map of knowledge that can potentially be of use to the organisation in any circumstance.
Top-right (economy)
A good way to explain the top-left quadrant as a high-level user oriented organisational pattern is with the WWWW acronym, which stands for "who, what, where, when". It's essentially the interface for booking meetings during which specific people, agents, tools and resources will be present in the same context.
Commercial affairs: The outward-facing role concerns all interactions with the market place, dealing with clients and suppliers to exchange value. This role in all the holons in the network leads to the overall flow of resource throughout society.
Public relations: The inward-facing role is all about maintaining the organisation's "self-image". In the case of an individual this would be the social profile. It's also about public expression of value (expressing its purpose in the context its operating in), positions and intents such as a charter, affiliations and undertakings etc.
Bottom-right (production)
This is probably the most intuitively understandable of the quadrants, because it involves the normal day-to-day operations of the holon, moving the material state towards the targets required by the holon's objectives.
This is the actual activity that takes place in the aforementioned meetings of specific roles and resources. Together they utilise their abilities and the resources allocated to the local scheduled slot which is their common "blackboard", operating together in accord with the Blackboard pattern in the local private scope.
Operator: This is the inward-facing role. Think of the "operator" role in the Matrix movie or the Bennie (Jasper Carrot) role in the Mission Impossible movies. It's a communications oriented role that keeps the whole team in touch with what's going on "in the field" (within the specific local "blackboard" scope in question).
Accountant: This is the outward-facing role which is all about reporting on the progress and performance of the operation. It may seem a little odd that this is an outward facing role because the organisations accounts are obviously private, but in the holarchy much of this role is about aggregate information such as performance and usage statistics which are shared publicly (non-locally in class-scope) to increase the utility of the ontology.
Bottom-left (development)
This quadrant represents the holon's self-organisation structure, a specific structure of behaviours (production rules) defined to achieve specific local objectives. In user terms, this represents the meaning, intentions and objectives of the organisation. The term "development" here refers to self-development not software development.
Manager: The inward-facing role is about managing the team to best achieve the organisations objectives. This involves helping the team to better operate together (including initial onboarding and change management) and the organisation as a whole to progress and develop.
Director: The outward-facing role is about the organisations direction, deciding where it's going, what its intentions and objectives should ideally be. It's an outward-facing role because it's about navigating the organisation through the external environment of circumstances.
Virtual instantiation
The common organisational context also comes inherently with the ability to assess variations of the current organisational structure, which is the process of self-development and management of potential. This can also be applied to any ideas, concepts of scenarios we see in the society or even from our own pasts, can be "replayed" and "remixed" virtually. This is essentially a form of "organisational imagination" which we call virtual instantiation. It's a dynamic mosaic of instances formed from subjective valuation.
Instantiation is virtual when there are no real resources backing an instance, instead its operating environment is provided synthetically from knowledge accumulated in the classes. This is like a simulation of the instance which matches historical activity and usage statistics.
Actual resources are connected to a part of the representation that acts like a local index of the data so that it can be part of the organisation. The agency which is responsible for maintaining this index has been delegated down to something simple like a Python function. And so the same agency that made this delegation (translated its own imperatives into Python) can just as easily make a function that provides random data that matches the real metrics.
In this way any instantiation can be tested before using it to interact with real resource and contacts. Virtual instantiation can apply to small changes to an organisation as well simply by having a new instantiation that's a clone of the organisation, but some aspects of the clone are changed, so we can observe them for a while before deploying the change in the live organisation (like a commit in software development, or standardisation in a continuous improvement loop).
Virtual instantiation is the organisational or OO equivalent of imagination, and is an essential prerequisite for adaptation. Virtual instantiation is the process by which variations are formed which are the source of evolutionary change. Even the progression from abstraction to production (concretisation) relies on virtual instantiation, because all instantiation starts virtually.
Continuous improvement
In addition to the quadrants, Integral Theory also involves developmental lines and stages.[15] Lines correspond roughly to the threads in our system, or in terms of production could be thought of as a holon's "product lines". Each of these lines follows the same general pattern of developing in discrete stages that involve interaction from all the quadrants.
We can think of the quadrants as discrete phases common to each developmental stage. Each quadrant has a loose causal connection with the next one forming a clockwise loop. Work is organised and booked in the top-right, performed in the bottom-right, adapted and developed in the bottom-left and the learned knowledge shared in the top-left which then leads to new work in the top-right again, but on a more evolved, complex and diverse level.
The form of this pattern is a spiral, each revolution arrives back at the same point but on a higher order of development. Each new level is like a platform supporting the next level, which leads to a kind of continuous improvement "ratchet" mechanism which permits development to ever higher levels, but prevents regression back to prior levels due to each new level becoming firmly established in the collective.
This is a very high-level view of the holon, because the quadrants do not have direct connection in this way, but it's a pattern that plays out consistently over time as the holarchy as a whole continuously improves and evolves.
The collective environment of knowledge is evolutionary, co-evolving with the holons, individual development and production within each holon being the source of change for the evolutionary process. This is the variational diagonal loop formed from the bottom-left and top-right quadrants.
The environment is in the form of a dynamic mosaic of instances (the local instance tree), and the user's internal objectives are in the same terms, extending the external mosaic within making up the selectional diagonal loop formed from the top-left and bottom-right quadrants.
Due to their common four-quadrant perspective, all holons have an inherent "understanding" of the fundamental conceptual meanings present in the common structure. Holons can inherently specify and operate in accord with objectives and purpose, they can organise and carry out work, embody behaviours and express commitments or needs etc. Anything within the context of organisation can be expressed and meaningfully acted upon and progressed.
Agents have the inherent ability to act meaningfully in their local scopes. Local scope is of a familiar and expected form, having future and past, a state of current progression as an activity and developing behaviour structure. Current conditions apply which require its attention and action, and it can select from various salient and relevant potential actions that match the conditions. The salient decision paths are at the intersection of axes, with the most relevant at the centre representing the default decision.
Harmony by default
When an agent receives executional focus, it is always in the context of a decision. The intersection of the axes is the matching of supply to demand which actualises potential exchange. The system evaluates different variations based on knowledge and expectations, resulting in an ordered tree of potential matches. The root of this "options tree" is the default selection, that which the system estimates to be the most harmonious choice.
The decision-making process at the centre is ultimately decided by the agency which can easily decide that another variation is worth exploring rather than the default.
But what's meant by the word "harmonious"? That sounds seriously hand-wavey. It's the name we give to the defaults because the holarchy has not only an inherent organisational system, but also an inherent telos.
The two behaviours of the holon are active behaviours that imply a movement in the direction of increased integration and increased self-autonomy. The four quadrants all have their own inherent form of active development like independent "departments" in the holon, contributing their own important aspects to the holon's progress.
The behaviours and quadrants all operate in a loosely-coupled asynchronous manner which minimises interference while maximising flexibility. All these inherent forms of development are complimentary, all contributing together to an ever-improving experience for all participants.
A core set of fundamental values for all high-level agents participating can be derived unambiguously from the four quadrant holon pattern. A holon can represent any arbitrary organisational objectives while also maintaining these inherent behaviours that underpin harmonious operation.
The basis of these values lies in the diagonal loops which are both continuous improvement loops. Each have a different concept of what it means to improve, but both have in common the tendency to increase their objectivity, efficiency and accuracy if their improvement progress. These are the self-assertive and integrative behaviours.
In this way, as the system evolves, the available knowledge becomes more accurate, accessible and useful and individual holons becomes more autonomous and prosperous. In other words the whole network progresses towards an ever more harmonious state.
To put it another way, a holarchy is an environment in which the objectively best states and situations manifest at all scales, rather than simply those that have the most force behind them, such as those with the largest corporations backing them, those featuring most in the media or those with the greatest network effect.
Inherent behaviours and values
The way that systems, behaviours, organisations and other new concepts are created in a holon is by creating specialised variations and remixes or mosaics of existing patterns. This is a process of specialisation, a movement from general to specific. When we make a more specific concept from a more general one, we say we're extending the general concept and that the new specific concept inherits the general aspects which have not been extended.
This is a very intuitive and natural way of defining new concepts which follows the way evolution and our own consciousness works. One important aspect of this method is that it leads to the entire ecosystem forming into a hierarchical structure with the general concept closer to the root and the more specific concepts further from the root. Higher-level general concepts are inherited by deeper more specific concepts. And the most general concepts of all, those that constitute the holarchy two behaviours, three levels and four quadrants, are inherited universally and unconditionally by all holons.
The expression of these fundamental behaviours leads to the expression of some inherent high-level values, because these general inherited dynamics remain at all levels, but have higher-order of conceptual meaning and significance in complex specialised organisational contexts. We call these high-order versions of the common patterns "inherent values", or in the context of AI agents, we call them its heuristic imperatives which we discuss in more detail in the AI integration section.
The bottom-up nature of the collective underpins the values of self-sovereignty and non-coercion, The public and private scopes support the notion of individual privacy and freedom of speech (and freedom of hearing!). The non-local scope of the ontology and the inherent sharing of usage statistics and performance metrics supports transparency of knowledge and its accessibility inherent accessibility by all unconditionally.
The evolutionary loop expresses the concept of meritocracy which underpins the concept of continuous improvement cycles. Meritocracy is a very loaded term these days, but in reality it simply means that roles should be filled by those whose performance results in the best outcomes, a common sense approach to systemic improvement.
The economic loop expresses the concept of a free unmanipulated and transparent market, and the sovereignty of the consumer and also embodies the principle of fair exchange. The end-user's unmanipulated opinion is valuable public knowledge.
Both loops together express support for diversity and specialisation and for continuous improvement of all the aspects, which is the telos of all holons mentioned above as embodying the concept of harmony by default.
One important aspect of this to note here is that the actual state of these values in any real context is never perfect, and in fact could be very far from perfect in some situations, but the key point is, that the structure of the system ensures that there is a consistent underlying force pushing for continuous improvement of all these positive dimensions.
In the next few sections we look in a little more detail at some of these high-order societal values that we're all familiar with, and how they emerge naturally in the holarchy model of organisation.
Truth
Both the evolutionary and the economic loops involve feedback, which is information about the local state. In the case of the evolutionary loop the information concerns the ability of instances to meet expectations in their performance of classes of behaviours. In the case of the evolutionary loop, the information concerns local objectives.
In both cases, decisions depend on this information, and so the information is obtained by way of a continuously improving assessment process. These information being backed by their corresponding process makes them knowledge, information that has utility and is trustworthy. The fundamental knowledge in these loops in the system continuously improves in terms of its objectivity and utility, and this underpins the objective truth being a universal inherent value in the holarchy.
Objective truth is the foundation of knowledge, and in the context of the holarchy, underlies both the ontology and the flow of resource in the form of a fair and transparent market. In other words, both the self-assertive and the integrative behaviours depend on objective truth for their reliable operation.
Objective truth is also considered to be a universal epistemic convergence because it implies that, through the pursuit of knowledge and the use of rational and reliable methods of inquiry, diverse individuals or communities can arrive at shared and consistent conclusions about reality. This convergence occurs because objective truth is understood to be independent of individual perspectives, biases, or beliefs, and is discoverable through systematic and empirical means.
Most other human values and principles depend on the principle of objective truth, even if they're not directly derived from it. For example, the imperative of "maximising understanding" depends on objective truth because it provides the foundation upon which understanding is built. Understanding represents a higher level of cognitive engagement with objectivity and knowledge.
The integrative side of the objective truth imperative implies the maximising of shared knowledge, the transparency of the market and the minimisation of obstacles to them such as intellectual property or monopolistic behaviour.
Prosperity and security
In the process of local development and production we pay for prosperity (the movement towards our valued objectives) with potential (opportunity cost and resource consumption).
In the economic loop we pay for security with freedom. Security is the guarantee of a stable and predictable operating environment on which organisation can be built (expectations and corresponding assurances). The cost is freedom, because some of our autonomy is sacrificed by binding ourselves into contracts and agreeing to behave in accord with the system.
The implied heuristics of these loops is to adapt our local system to optimise these costs. In other words to maximise prosperity and security while minimising costs in terms of opportunity and freedom.
Ethic of reciprocity
The ethic of reciprocity, also called "the golden rule", is implied by the fundamental dichotomy of self-assertive and integrative behaviours in a holon. This assures the convergence of all participants towards the fundamental values that every participant wishes for themselves.
The the golden rule as inferred from the cognitive architecture applies specifically to the objectives that the default common behaviours progress towards. For example the maximisation of objectivity applies both to self and to what we contribute to the whole.
There is a problematic edge-case with the golden rule. For example when it involves differences between cultures or species, where behaviours that one culture deems desirable are considered undesirable by another culture. Another version of the rule called "the silver rule" helps to alleviate this by using the negative form of the concept, "don't do unto others what you would not have done to you". This version is a lot more universal.
This edge-case does not apply in the holarchy, because the rule only applies within the context of the common default behaviours, leaving more specific value judgments for more specific decision-making contexts.
Non-coercion and self-sovereignty
The holarchy model maximises independence which is also a maximisation of autonomy, self-sovereignty and local action. The maximisation of autonomy implies the minimisation of coercive force, which is encoded at the most fundamental level of the integrative needing to incentivise participation.
Given the scale-independent fractal nature of the holarchy, we can extrapolate this to a general rule for action at any level of organisation, such as relations between organisations or communities, which makes it a general heuristic imperative and common default behaviour.
Four-quadrant holon summary
The four quadrant holon model covers all aspects of organisation in a simple, but clearly extendible way. Arbitrarily complex objectives can be defined not only in terms of their operation, but also the nuances of their ongoing development, deployment and evolution. All these aspects actualise their own improvement as well as supporting the holon as a whole as well as the wider society and culture. It's a universal organisational pattern that's completely independent from the structure or specifics of the states or objectives being organised.
While the model is very compelling, one might expect that a software design to implement it would be exceedingly difficult since things like "co-evolutionary relationships" and "non-local" aspects are broad and ill-defined concepts.
But this is not so in the case of the holon model, everything we've outlined here can all be achieved by a deceptively simple algorithm that permits this arbitrarily complex behaviour using recursion and feedback. These algorithmic details are described in the holon mechanism article.
As a cognitive framework, this four quadrant model forms a lens through which holons interact with each other and the environment. All holons behaving in accord with this pattern results in a general aligned convergence on ever-increasing harmony at all scales of operation, while simultaneously also improving the potential and freedom of the individual participants. The system is presented to the user in the form of a self-organisational application which is our conceptualisation of the universal middleware or "everything app".
Layer zero
Layer one is usually thought of as the class-instance system as a whole, but it can be broken up into two layers itself which we call layer zero and layer one. Layer zero is the top-down process of public/private scope differentiation, and layer one is the corresponding bottom-up process of joining the relative names into the class-group (ontology). In our model, these are the vertical instance axis and the horizontal class axis respectively.
Layer one
We introduced the four quadrants conceptually as coming from the individualised form of the class-instance concept being extended to also include a collectivised form of the pair.
Layer one introduces a data structure and a process operating on it that brings about just such a basic individualised form of the class and instance concept. And it permits a complimentary process that represents the collectivised extension of the concept (which is defined in layer two), thus yielding the four-quadrant basis.[16]
For the purposes of this discussion, we start with the assumption that we have a local hierarchical namespace functionality such as an associative array. This assumption is fine in the context of information technology, but in the context philosophy we must even define the mechanism of names and symbols which is an ongoing discussion in the four quadrant holon philosophy article.
What this foundation gives us in terms of the holarchy is the possibility to create graphs of holons that can contain arbitrary content and relationships to each other. Holons here are within a typical key:value pair space in which the keys are always class-names and values are always instances of that class. Note that we don't depend on the concepts of class and instance existing within our program environment, these concepts are provided by the four-quadrant holon mechanism extending the basic associative array functionality.
Two trees
In terms of data structure, class and instance are a pair of graphs that each relate the single set of holons together in two distinct, but complimentary, grouping strategies. We call these two structures trees, although technically only the instances are connected in the form of a one-to-many tree, the classes are connected as a "semantic network" that we call the unified ontology.
These trees are very much like what we see in traditional OOP where there is a structure of live actualised instances and an ecosystem of classes from which instances are instantiated and which determines how they operate.
The instance-tree in the holarchy system is easily understood because it's much like a runtime structure of object instances in any traditional running OO program. Instances control a set of "child siblings" as a parent context itself being a sibling performing a function in the next layer of abstraction higher.
As discussed above, the class aspect of the system as a semantic network or ontology, which is formed from all the many local instances of each class. This aspect of connectivity is not so intuitive, because in traditional OOP there is no inherent connection between instances by virtue of them being of the same class.
The class tree is created by a global process of merging all variations of the class across all the instances of it in the tree. The class tree does not define how variations can arise, just how to integrate them into a global whole if they were to arise somehow. The class tree defines the structure of classes, and as a whole defines the shared unified ontology of classes.
The merging of variations essentially means that the parent-child relationships in this tree are not black and white, but rather each relationship is itself a tree of optional relevant variations.
Instances take on the form defined by their respective classes, and the classes are the collective product of their instances. So the class-instance relationship is in the form of a co-evolving feedback loop.
The two-tree process is a way of permitting a tree to extend itself within subjectively. This leads to two separate graphs of one set of nodes, each having an inside-outside perspective of scope that together constitute the subjective world of meaning within. From here the four quadrants can be actualised by allowing mergeable process execution within the context of each scope-pair.
Multiplexing
The two trees are created, maintained and related by a simple process called time-division multiplexing.[17] This is a process by which a continuous flow of executional focus is quantised into arbitrary[18] units which cyclically iterate the entire instance-tree structure.[19]
This iteration process is a movement of executional focus from one node to another. When focus enters a node it's akin to the calling of a function (sub-routine) in a program, because it's moving "down" into a more specific context that is deeper within the structure. Conversely the leaving of focus after completion corresponds to the returning from the function back up the "call-tree" to the "caller" above. The movement downward is a process of division of focus, and the movement upward is a process of information integration, aggregation and propagation "upward", "outward" or "beyond".
As with traditional OOP, or indeed with organisational structure in general, this vertical directionality gives rise to a structured scope system where there is an outer public side and an inner private side to every node. These correspond to the outward-facing and inward-facing concepts in Koestler's holon model, to the outside and inside of a biological cell, or to the public and private property contexts of organisation.
In the holon, the kind of time being multiplexed is executional focus (or agentic attention more generally). The multiplexing movement of focus throughout the structure is a repeating pattern determined by the structure itself. This pattern exhibits a continuous bidirectional flow of function-like calling and returning. This can be considered as a way of representing organisational structure in general.
The multiplexing pattern of focus moving amongst the scopes is what creates hierarchy and its return. Objectively it's just a flat graph, but the movement of focus over time creates the subjective perspective of hierarchy seen from within private scopes. The return flow makes possible the sharing of structure amongst these perspectives.
Multiplexing in this way can be considered as the "collectivised" version of function calling. The compliment of function-calling is to return the result of action, which taken to it's collectivised version is a scale-independent merging or aggregation operation.
Multiplexing is the mechanism behind our implementation of the blackboard pattern and its decoupled approach to private scope. We now have a system where the operation is decoupled both horizontally (blackboard and production-rules) and vertically as well via the "collectivised" function calling and returning model.
The multiplex
This name refers to the concept of a actual running multiplexing instance and so is synonymous with "instance tree". The multiplex occupying real space, in a particular state and requiring real resource for its continuance and progress.
- The multiplex only has meaning from within the subjective perspective
- It's created entirely within the subjective context of a holon
- It takes the form of a mosaic of instantiated classes
- The classes are defined by the merged structure of all instances of it throughout the network
- The structure of the instances follow the pattern of the class, but also in accord with the arbitrary local situations and objectives.
Layer two
- Layer two is often referred to as the "objective-subjective", it takes place in the context where both the objective class-instance mechanism and the subjective instance world operate together.
- It's not the actual subjective, that's layer three, it's the objective mechanism within the subjective context created by layer one.
The holon (p2p peer) behaves as both collective and individual parallel behaviours (of course in reality they're alternating due to all distinction coming from the multiplexing pattern).
The concepts of collective and individual are defined by how they relate to each other and the shared common environment they maintain together. Both are teli, each progressing in accord with their own particular idea of improvement.
The multiplexing nature of layer one is the basis of individuality, enabling private scope (and therefore also public scope) and enabling a perspective of continuous threads. All multiplex instance tree contexts are structurally within the linear space-time multiplex.
Layer two takes place within this context of non-local class knowledge, actual instance state, both in private and public contexts provided by layer one, all as a structured mosaic of independent continuous threads.
The common form of progression is the production rule, which can in turn be generalised as a feedback loop between self (self-organisation) and environment (collective p2p or collective-aspect-of-self).
The collective is enabled and supported by the individual behaviour. The bottom-up shared collective process is non-local, not in the linear space-time multiplex, but merged with all locations, and done so in a way that globally synchronises in between consecutive local moments from all local perspectives. This is subjective non-locality, subjective contexts include apparent non-locality.
The diagonal loops (⤫)
- The processes that constitute layer two take the form of a pair of feedback loops that connect the quadrants diagonally.
- each loop connects both the class and instance worlds as well as the individual and collective worlds
- each loop has a control loop at the bottom that is informed by and maintains a collective loop at the top, these are the individual quadrant processes which are themselves all feedback loop process
- the subjective content and structure of the multiplex is maintained by a loop between the bottom-left and top-right quadrants.
- the knowledge generated and represented by the multiplex is maintained by a loop between the top-left and bottom-right quadrants. These are the quadrants representing the ontology (all knowledge) and production (knowledge in use).
- in terms of evolution, the multiplex or instance diagonal represents class selection, and the knowledge or class diagonal represents variation.
- in terms of actual code, the diagonals are each represented by messages passed between the output of one quadrant and the input of its diagonal opposite quadrant
- in terms of process in code, the four quadrants are the only second layer code, and they occur sequentially in a single quanta of executional focus.
- the four quadrants are executed as one atomic (O1) process
- each of the bottom quadrants has control-loop form and has the agency between its input and output, the the input (coming from the collective environment top and opposite end) informing the agency, and the resulting change feeding back in to that collective quadrant.
As is quite intuitive and can be seen in the diagram to the right, the quadrants naturally form a diagonal pair of axes. But the diagonals also represent the actual algorithmic/mechanistic connections between the quadrants too. We won't go into the details of the mechanism behind the formation of the four quadrants in this article, but the diagonals are one specific consequence of this mechanism.
There is an important conceptual reason for the diagonal connections as well which is that classes are made specifically to perform in local subjective contexts as instances, and the basis of all classes is a feedback loop that orients the performance towards the form it defines (so that the state and development gravitate around the evolving form of the concept like the Ship of Theseus). What this means is that collective class meaning is defined in relation to individual instance, knowledge is defined in relation to performance, which is the top-left to bottom-right diagonal.
On the other hand, class structure requires real resource backing, and so its collectivisation is the instance world. The instance collective structure is defined in relation to salient class structure, which is a connection between the bottom-left and top-right quadrants.
Within the world of the actual functioning holon developing and operating in its local context, the control loops are both connected to their opposite collective state, and this state is backed by a collectivisation process. The second abstraction layer of the holon takes the form of diagonal feedback loops. each composed of two loops connected together inputs to the outputs of their partner. The upper end is a collective loop and the lower end is an individual control loop.
The functionality of the quadrants takes the form of a pair of feedback loops connecting the diagonally opposite partners.[20]
These two diagonal loops constitute dynamics of second abstraction layer of the model that refine the four quadrants behaviours and connect them all together into a harmonious whole.
Multiplex loop (⤢)
- the multiplex loop connects the intention and economy quadrants
- the meaning of this loop is based on the behaviour structure of the self organisation interacting with the environment to develop (progress its objectives more effectively) by allocating real energy and resource amongst the relevant variations
- Development involves assessment of performance (wrt attaining objectives and meeting expectations and preferences), and supporting and inhibiting variations (selection) based on these assessments
- allocating resource takes place in the context of exchange in a transparent marketplace of relevant resources and participants
- in terms of evolution, the multiplex loop represents the selection of knowledge
- selection is made against the variation space of the knowledge diagonal, and collectively it defines what knowledge is established in usage
- selection is informed by the ontology which acts as a knowledge map
The diagonal consisting of the bottom-left and top-right quadrant (⤢) forms the selection loop and is associated with the self-assertive behaviour, the instance tree and the future. It extends the first layer instance tree (represented by the primary vertical axis) which is inherently economic in nature due to representing the flow of real resource and attention through time, this loop represents the process of instantiation.
The bottom-left quadrant represents the self-organisational structure, which is a structure of recurring behaviours. The top-right quadrant represents the schedule of committed resource that backs the performance of these behaviours.
The diagonal axis of the selection loop extends the first layer instance tree from a purely attentional flow to a more refined concept that includes the aggregate of local market knowledge coming from subjective value judgements and decision-making.
This axis represents the holons presenting itself in its self-assertive form in the public market. In other words, its public state as an autonomous self-organisation in the public market. This self-assertive expression of economic commitment, is the form that the aforementioned subjective rating takes. This is the subjective evaluation of instance, and expression of that evaluation through attentional (and resource) support. The directed support is how objectives are determined, the selection loop is results driven (declarative) and focused on the future.
This axis represents the holon as a sub-class group from above interacting together as an organised structure of loops from past in the bottom-left to future (schedule) in the top-right. From above. this group is seem as a collection of public interfaces. This is the mosaic of class-mixin instances referred to earlier.
The foundation of selection is the flow of attention, which is the salience landscape, the distribution of weights that determine the flow of focus throughout the instance structure. Salience is distributed internally (bottom-left) as the tentative virtual branches extending from what's represented in the resource flow (top-right).
From the user (self-organisation) perspective this diagonal represents the market interface. The organisational structure can publicly present supply and demand schedules of various resources. The holon presents various consumer and producer interfaces and states publicly. This is how commitments are made that permit actual production, and all together make up the whole resource-flow.
The selection loop is an organisational structure spanning internal behaviours as well as resource schedules. Salience is distributed across the structure, and directing this distribution over time is self-development. Organisational structure and its salience are the common form of the bottom-left and top-right quadrants.
The loop is a bidirectional instance-tree process of interaction between internal virtual instantiation (exploring a concept) and the public market of actual resources and value. The private virtual content is essentially a "replaying" and "remixing" mosaic of instances from the public arena.
The public content (the the flow of resource as a whole) which is the total of all the internal virtual instances in the whole network that have become backed by real resource (through persistent salience). In other words, a context starts as a purely abstract concept that can be explored and gain more focus and resource, becoming booked into public resource schedules.
The top-down side of the selection loop is the flow of focus and resource that determines which instances and conditions are active (selected). The feedback flowing from the bottom up is intention, or subjective valuation of the context.
Knowledge loop (⤡)
- the knowledge loop connects the ontology and production quadrants, of all knowledge and knowledge in use
- the knowledge loop maintains the ontology which is the collective form of the knowledge. It's a map of the knowledge in use and its performance, expectations, variations and dependencies.
- this knowledge map informs selection within the multiplex loop
The diagonal consisting of the top-left and bottom-right quadrants (⤡) forms the variational loop and is associated with the integrative behaviour, the class tree and the past. It extends the first layer class tree which is inherently ontological in nature due to representing the dependency and relevance relationships between classes (classification process).
The top-left is the ontology of behaviours, and the bottom-right is the actual performance, or usage of them in the local private production context. Both ends of the variational loop concern the execution (imperative) aspect of the system in terms of utility and performance.
The ontology in its basic form is created in the first layer, based on volume of usage. Then in the second layer it's extended to include the performance metrics corresponding to the specific performers of the behaviours. This process expresses the principle that knowledge is not black and white, it's embodiment is proven and assessed through actual performance.
In this subjective inner context, the information being aggregated is the performance of the knowledge in-use internally. This aggregate knowledge is the performing-instance's "reputation" or potential effecting it's likelihood of being matched in the market again in the future.
In user or self-organisation terms, this diagonal represents the usage of the knowledge in the operation of the organisational structure. This diagonal represents the execution in the present on the bottom-right, and the establishment formed by all execution in the present throughout the network, i.e. what is established in usage.
The variational loop is a bidirectional class-tree process of interaction between internal usage and execution of a behaviour and the institutional map of knowledge relating to the behaviour.
The top-down side of the variational loop is the institutional knowledge and guidance (map) flowing inward from the collective class. The bottom-up feedback side is the objective performance (of the embodied knowledge) and usage statistics of local production in aggregate form.
Intersection of the diagonals
- the centre where the diagonals cross represents the present moment of focus
- the two loop processes set up the moment content for focus in the present.
- they make salient what's currently most relevant, ready for apprehension and action by agency.
- and they aggregate agentic changes from within and merge it with the collective
- both loops have a local private quadrant that operates prior to agentic interaction, and a collective public quadrant that operates after the agency returns
- the agentic attentional focus is the true centre, and the four quadrants directly surround it with their loops
- each loop is a pair of quadrant processes executed sequentially, and each loop is executed sequentially, meaning the four quadrants are all sequentially executed as a single O1 process consuming a single quantum of executional focus in the multiplex
The purple dot in the centre of the diagram is the aforementioned starting point for our description, the focus. The diagonal axes intersect in the centre forming the focus. In this way, the present moment is the intersection of the future and past axes, and the synthesis of the four quadrants of focus.[21]
These perspectives all come together at the conceptual centre of the holon as the subjective self in the here and now. By every holon behaving in both these ways at every scale, a unified holistic evolving indeterminate harmony emerges.
This central point of focus is the intersection of the two diagonal axes, and is shown in the diagram as the purple dot in the centre. Each quadrant's effect on the local shared scope is in accord with its specific conceptual meaning. The process by which the quadrants "come together" in focus, is that each of the four receive independent attentional focus (the attentional energy the holon controls is divided internally into four).
How the diagonals are inherent in the mechanism
- the diagonals have a mechanistic ("physical") origin as well, layer one sets up a dual dipole dynamic involving the scopes of the calling/returning dynamic and the meaningful points the agentic focus can appear in
The diagonal axes are also an inherent aspect of the mechanism we've described above that gives rise to the class-and-instance concept.
By default, the layer one dynamic that bought about the class-and-instance (the multiplexing and its complimentary aggregation process) are also present in the inner subjective scope too (because the scope is extending this dynamic). In the inner scope, we have one diagonal extending the class concept with the objective dynamic, and the other diagonal extending the instance concept with it. In this section, we'll first look at how the diagonals come about in this mechanism, and then go into the details of what they mean conceptually.
The diagonals come from the fact that there are only two ways of combining the horizontal and vertical axes. Conversely we can say that with each quadrant interacting only with its opposite partner, the two original dipoles can be embodied.[22]
The diagram to the right shows the two different ways of combining the original pair of axes. The ends of each axis have been assigned a letter so we can keep track of which are present in the combined results. Each way of combining the axes leads to a new axis connecting a combined pair of ends as shown by the green arrows. These green arrows can then overlaid on the original pair oriented orthogonally to each other, revealing that the green arrows connect the quadrants diagonally.
Executional focus appears in each of these four scope-compositions in order to create the first layer class-and-instance mechanism. Each of these sessions of focus can be extended with a second-level process which yields the two diagonal loops.
This diagonal axis that consists of the top-left and bottom-right quadrants is the evolutionary loop, and the axis orthogonal to it consisting of bottom-left and top-right is the economic loop.
The evolutionary loop is a feedback loop involving knowledge embodiment and use, and its metrics and selection. The information being aggregated here in this layer two extension is agent centric (knowledge performer), which extends the layer one aggregate that is purely related to the knowledge being performed, not to the performer of it. In other words, the class of behaviour is extended with its instances and their performance.
The economic loop is a feedback loop between producer and consumer. Producer is like the "service provider", defining the terms of engagement and selection. Consumer is the source of demand that animates the flow of resource. The information being aggregated in this layer two extension is the commitment-backed supply and demand. In this diagonal axis, it's the first layer instance context that gets extended by the layer two aggregate information. This loop is the layer two view of the "calling" and "returning" cycle set up by the multiplexing in the first layer.
Relevance
- relevance and dependency form the back-bone of the holarchy, form the structure
- relevance and dependency are similar, just that the latter necessary while the former is optional
- relevance is evolutionary
Focus is in the present, but interacts with the past and the future. When in focus, each axis connects their own two quadrants by a matching process.
The past axis is all about agency, the agency that's needed for production in the bottom-right, and the reputable candidates to perform it in the top-left. These comes together in the centre as the relevant candidates.
The supply and demand nature of the future axis match in the middle to yield a potential flow of exchange and production. Potential means that there is nothing missing in terms of local resource, actualisation is a matter of commitment to a process that can achieve it.
This matching process can be performed by the cheapest agency, but can also be guided by any agency present that might choose to intervene. The focus of a holon is within the present moment which is the synthesis of the four quadrant aspects. The matching process at the intersection of the axes is the mechanics of the cognitive architecture. This abstract centre point is the elusive Self in the here and now from the subjective perspective of the holon.
The most relevant types of activity through which energy can potentially flow become prominent from matching the past with the future. Over time this process guides the allocation of energy over the complex landscapes of intention and production to yield the evolutionary collective aspects of ontology and economy.
To merge or maybe not
All activity that takes place in the system is in the form of potentials being reduced by action. The potentials are all in the form of two class names, one as parent and the other as child. This connection once completed generates reputational data which enables the continuously improving local control loops and evolution of the collective.
Both sides of the match are an axis, but are essentially a class-name, so it's really class names themselves that comes with the special non-local extension. Primarily as the extension of instance into the name-connected graph, then in their connection with other names in the parent-child relationship the non-local aspect extends further to the future and past forms of non-local information.
Scale-independence
- subjective non-locality
- decoupled operation (horizontally and vertically)
- continuous-able - scale-independence is not only about size and depth, it's also discrete/continuous agnostic
Multiplexing is a scale-independent process, which means that the same dividing process applies to arbitrary depth (and may be part of larger structure beyond), forming a hierarchy of threads from what is ultimately just a single thread. The width or depth of any local group of threads is all arbitrary in the sense that the multiplexing mechanism itself is content agnostic.
The cycle of top-down and bottom-up movement is used to create the class-tree. Since the process is responsible for dividing the executional focus throughout the whole instance tree cyclically, it also has the option of using a portion of that focus unconditionally for maintaining the class-tree.[23]
Classes are not associated with any specific time or location, which is why the class-tree is called abstract and non-local.
The two trees define the different scopes of operation within the holarchy system. The class-tree defines non-local scope which groups all instances of the same class together regardless of their whereabouts in the holarchy.
The non-local connection of an instance to its class-group does not occur instantaneously, it only appears so from the local POV since it happens between successive quanta of focus at that level. The instance-tree defines public scope (public is not necessarily actually public, it simply means not encapsulated) and private scope which correspond to a specific locations and times.
The general structure of the ontology is defined by what is established in usage. Which path variations are chosen locally becomes a non-local landscape of variation tied to the contexts they appear in. The ontology is thus a semantic network formed by established and evolving dependence and relevance.
Revisiting first-class citizenry
- the origin is private-scope and the concept of encapsulation
- this means the child is responsible for its own actions, and for apprehending the conditions
- encapsulation makes the system decoupled vertically, the essence of scale-independence
- this is the self-assertive behaviour, the support of true autonomy by the collective, and the source of sovereignty and liberty
Mechanism conclusion
First we introduced the four quadrant system generally as a model and what it means from a real-world organisational perspective. We finished that discussion by tying the system in to it's overall alignment to scale-independent harmonious organisation.
Then we introduced a specific mechanism that represents this four-quadrant model. This mechanism is simple and symmetrical, and is entirely mechanical in the sense that all its interactions depend entirely on its own structure and state.
The first abstraction layer is just a pair of tree structures changing in accord with a process that operates in accord with the structure of those trees, yielding a self-organising tree-pair. The behaviour of each tree is simple and deterministic, but yet they're complimentary, and together they open up a second abstraction layer in which the class-instance concept is manifest and usable.
This second abstraction layer is the same dynamic again, but this time in the local private context of subjective value. This local scope takes the form of the two diagonals, the economic and evolutionary loops. Even though this second layer functionality involves high-level concepts, it's still entirely mechanical, extending the first layers dynamics recursively within with the same dynamic again.
This is an amazing conclusion which is hard to believe[24]. It's showing us that there's a class-instance concept inherently hidden within the simple process of multiplexing (combined with its complimentary aggregation process), which is itself amazing. But it goes further saying that when used within the context of itself, this same dynamic reveals the high-level feedback dynamics of evolution and economy. The multiplexing dynamic when connected back onto itself inherently manifests holarchy, the self-organising holarchy of self-organisations.[25]
The primary axes
- todo: this section is too complex, some needs to go to mechanism
First we'll go into a bit more detail about the primary (vertical and horizontal) axes that compose the first abstraction layer, depicted as the blue "+" in the layers diagram above. Each end of an axis represents an aspect of behaviour which is common to two quadrants.
Cut down version: All concepts that make up the holon model are dichotomies, so in any scope of concern in the model, there's always a clear conceptual division into complimentary pairs.
There is an inherent geometric correspondence of a complimentary pair as being an axis with a centre and a negative and a positive end. For a complimentary pair to actually be represented in some system, it would also need to "contain" structured state of some kind (but we're agnostic to the specific form of the state at this level of generality).
There may be infinite possibilities of form and state that the content structure might take, but they all have these basic geometric qualities in common independently from their content.
When two axes (dimensions) share a common centre but are otherwise independent from each other, we call them orthogonal (geometrically perpendicular) to each other and forming a plane.
An orthogonal pair that both operate on themselves as state can be two aspects of the same state. This is the case with our orthogonal pair of axes in the holon. The two axes each represent orthogonal concepts that each progress themselves as state in their own way.
All concepts that make up the holon model are dichotomies, so in any scope of concern in the model, there's always a clear conceptual division into complimentary pairs.
There is an inherent geometric correspondence of a complimentary pair as being an axis with a centre and a negative and a positive end. For a complimentary pair to actually be represented in some system, it would also need to "contain" structured state of some kind (but we're agnostic to the specific form of the state at this level of generality).
There may be infinite possibilities of form and state that the content structure might take, but they all have these basic geometric qualities in common independently from their content. When two axes (dimensions) share a common centre but are otherwise independent from each other, we call them orthogonal (geometrically perpendicular) to each other and forming a plane.
An orthogonal pair that both operate on themselves as state can be two aspects of the same state. This is the case with our orthogonal pair of axes in the holon. The two axes each represent orthogonal concepts that each progress themselves as state in their own way.
Both concepts take the form of a scope (namespace) concept with the positive end representing being not within the scope, and the negative side being within it. It's this way around specifically, because outward is multiplying the scale of the scope making it larger and inward is dividing it making it smaller.[26]
We'll talk about a specific mechanism behind this below, but for now we'll just start by saying that the first method of scope is the usual public/private vertical dimension that we're used to with an object from OOP. And that the second method of scope (which is complimentary in its operation to the first) is about time, one end represents that which is in the linear timeline, and the other end is that which occupies the cyclic energy aspect. The top is public, the bottom is private, the left is abstract and the right is actual.
The operations that bring about the primary axes are the first abstraction layer of the model. Both subsequent layers feature these conceptual directions at the most general level of their ontologies. Each primary direction defines behaviour that is common to a pair of quadrants. The behaviours are composable (production rule blackboard) permitting each quadrant to embody the behaviours of both of its adjacent directional influences.
Top (public)
Top represents the integrative behaviour of the holon that contributes "unconsciously" to the collective. The collective unconscious (ontology, culture) and the material state of resource flow (society), it's the scope outside the holon's subjective perspective that maintains the network as a whole.
The top pair of quadrants both progress the public scope, the left in the form of evolutionary progress of knowledge and the right as the flow of resource exchange progressing over linear time.
In terms of time the top represents the future, what's possible, potential and imminent.
Bottom (private)
The bottom represents the self-assertive behaviour of individual autonomy, which in our system means taking the form of a control loop. This is the perspective from within the holon's private subjective scope. The subjective scope is production rule oriented, and represents the self-development and production aspects of the holon. In terms of time, the bottom represents the past that has been created through operation and development.
Private scope consists of a list of sibling names which are all things that "reside" within that same scope, such as information and other agents. The contents of the private scope are "local" to each other.
The bottom quadrant pair both operate as a control loop which continuously brings the local scope to a better state. Both lower quadrants progress the state self, the left subjectively developing the self and the right progressing the objective material state.
Left
The left represents the abstract world which we call class, but it's also Koestler's fixed rules and represents structure, knowledge and possibility. In terms of time, the left represents, the cyclic nature of abstract behavioural patterns (spectrum that's orthogonal to linear time).
Right
The right represents the concrete actualised world inside of time which we call "instance". This is Koestler's flexible strategies and represents day-to-day organisation, exchange and operation. In terms of time, the right represents the visible world of actual resource flowing within linear time.
Concepts that have come up in meetings
- changing class of a specific node compared to the sub-classes due to the current (and prior) classes and salience/relevance. That the first relates to development and the latter to operation and factory pattern. See the 2024-06-06 meeting transcript.
Notes
- ↑ Multiplexación in Spanish.
- ↑ Different agency types will gravitate to different sizes for their average quanta, but consistency is maintained.
- ↑ This multiplexed instance-tree defines the fundamental meanings of space and time in our system. Space is the structure itself, including its ability to contain further structure or arbitrary content. Time is the continuous perspective that is represented by each node (holon) due to the regular cycle of focus it receives.
- ↑ Whether it should be treated in a multiplexed or multi-threaded manner. Ultimately continuity is an illusion and multiplexing is the ultimate mechanism behind this illusion.
- ↑ The usage of the class-instance mechanism is the instance of class-and-instance.
- ↑ The class and instance aspects of the instance world
- ↑ Philosophically this is the undefined root, the source of all change.
- ↑ It's this way around specifically, because outward is multiplying the scale of the scope making it larger and inward is dividing it making it smaller.
- ↑ The nature of the state is very general, and so the two directions are more general than numbers, they're more like "superior" and "inferior".
- ↑ This concept of "private property" refers to the private group workspace that's guaranteed to be reliable and predictable (by the institutional aspect in the top-left).
- ↑ Institutional predictability is the idea that all participants of a society have a reasonable expectation of how the society operates and how their actions will be governed. In society, this predictability includes property rights, contract enforcement, and legal protections.
- ↑ In Integral Theory the adjacent quadrants are considered to have a tighter relationship to each other than the diagonal opposites, due to their sharing of a direction. But in our model we attribute the direct connection to the diagonals due to them taking the form of a feedback loop with their opposite partner. The tightest relationship of all is the H and V opposites in L1.
- ↑ The class-instance concept applied to itself.
- ↑ This also relates to the The path of the Masters.
- ↑ This aspect of Integral Theory which Wilbur calls AQAL (all quadrants, all lines) is incorporated from another system called Spiral Dynamics, a model of human development that categorises the evolution of values and world-views into distinct levels, developed by Don Beck and Chris Cowan and based on research by Clare Graves.
- ↑ This mechanism is responsible for bringing about local scope, and so it has to operate outside of local scope, which is to say in non-local scope. What this means is essentially that the process has to be scale-independent so that it can underpin all operation at every scale and complexity. In practice this means we're defining a common parent-child relationship mechanism.
- ↑ Multiplexación in Spanish.
- ↑ Different agency types will gravitate to different sizes for their average quanta, but consistency is maintained.
- ↑ This multiplexed instance-tree defines the fundamental meanings of space and time in our system. Space is the structure itself, including its ability to contain further structure or arbitrary content. Time is the continuous perspective that is represented by each node (holon) due to the regular cycle of focus it receives.
- ↑ In Integral Theory the adjacent quadrants are considered to have a tighter relationship to each other than the diagonal opposites, due to their sharing of a direction. But in our model we attribute the direct connection to the diagonals due to them taking the form of a feedback loop with their opposite partner. The tightest relationship of all is the H and V opposites in L1.
- ↑ The visible aspect from the local subjective perspective of this intersection is between the top-right and bottom-right quadrants, between the past and future linearly. But from the objective non-local perspective we can see that this intersection is in fact orthogonal.
- ↑ Processes that are mergeable (as discussed above regarding production rules) permit combination commutatively because the execution is not ordered (parallel, decoupled). Commutative combination of two dipoles is naturally modelled in the form of four quadrants which are each composed of one end of each dipole.
- ↑ The non-local aspect of the system does not occupy any subjective focus, in terms of agency it is literally unconscious behaviour.
- ↑ So hard to believe in fact, that it seems like there must be a mistake somewhere. But until we find it, we'll keep refining the idea and attempting to build it.
- ↑ ChatGPT: In essence, this statement is drawing a parallel between a technical process (multiplexing) and broader concepts of organization, feedback, and emergence in complex systems. It suggests that even in technical or mechanical processes, we can find patterns and principles that reflect the fundamental ways in which the natural world and human-made systems organize and evolve. This perspective encourages a holistic view of technology and systems, seeing them not just in isolation but as part of the broader tapestry of the universe's organizational principles.
- ↑ The nature of the state is very general, and so the two directions are more general than numbers, they're more like "superior" and "inferior".
Related projects
- holons.io - hierarchical payments
- Coasys - an alternative holarchy built on holochain
- We Collective - a holonic organisational social network
See also
- Holarchy
- four quadrant holon model needs to be merged and redirected to here
- Philosophy of the holarchy